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Abstract
The aim of this paper is to evaluate and compare the performance of two machine learning methods, Gaussian process 
regression (GPR) and Gaussian mixture models (GMMs), as two possible methods for monitoring the sludge profile in a 
secondary settler tank (SST). In GPR, the prediction of the response variable is given as a Gaussian probability density 
function, whereas in the GMM the probability density function is built as a weighted sum of Gaussian distributions. In both 
approaches, a residual is calculated and a fault detection criterion is implemented via a recursive decision rule. As case study, 
GMM and GPR were tested using real data from a sensor measuring the suspended solids concentration as a function of the 
SST level in a wastewater treatment plant in Bromma, Sweden. Results suggest that GMM gives a faster response but is also 
more sensitive than GPR to changes during normal conditions.
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Introduction

Increasing demands on effluent water quality and resource 
efficient operation are important driving forces for waste-
water treatment plants (WWTPs). Process monitoring and 
detection of abnormal conditions are crucial tasks, since 
they help in keeping a robust and efficient performance 
of the plant (Olsson et al. 2014). Furthermore, increasing 
the amount of sensors adds process information but also 
increases the complexity for plant operators. Hence, the 
need for fault detection methods is a priority.

The secondary settler tank (SST) is a key part of a 
WWTP since it provides two functions: clarification and 
thickening. In the clarification, the aim is the removal of 
suspended solids (SS) so to get a clarified effluent that 
meets the effluent SS goal. In the thickening, the aim is to 
get the concentration of the settled solids to be returned 
to the bioreactor. The SST uses gravity to separate the 
sludge (solid) component from the treated water (liquid). 
Due to the clarification and thickening functions, typically 
a concentration profile (also called sludge profile) has a 
low value for the concentration close to the effluent, and 
this value increases towards the bottom of the SST. There 
is a level where the solid concentration abruptly changes, 
which is called sludge blanket level. This level together 
with the SS concentration in the bottom or in the return 
sludge is the typical values to monitor in a SST.

Some examples of methods applied to monitor a SST 
include image analysis (Grijspeerdt 1997) and model-
based approaches (Traoré et al. 2006; Yoo et al. 2002). 
Even though, the prediction of the sludge concentration 
profile is still far from satisfactory (Li and Stenstrom 
2014), which makes it problematic to perform a good mon-
itoring of the SST, mathematical models have also been 
used for predicting the sludge profile; see, for example, 
1D model proposed by Diehl et al. (2016) and 3D model 
proposed by Xanthos et al. (2010).

In the last two decades, the research field Machine 
Learning has gained especial attention since with machine 
learning it is possible to develop methods that can auto-
matically detect patterns in data (i.e. learning) and then to 
use this information to predict future data (Murphy 2012). 
There are many different techniques in machine learning 
including decision trees, data clustering, neural networks, 
Gaussian process regression, Gaussian mixture models, 
to mention a few.

From these machine learning techniques, Gaussian 
process regression (GPR) and Gaussian mixture models 
(GMMs) are two techniques that have started to gain inter-
est in different applications. GPR is a regression method 
where a prediction of the response variable is given as a 
Gaussian probability density function. Thus, the predicted 
value of the response variable comes with a variance esti-
mate, which is interpreted as an uncertainty measure of the 
prediction (Rasmussen and Williams 2005). It is worth to 
note that GPR is not a new concept, and it was originally 
known as kriging, with an origin from geostatistics in the 
1950s (Cressie 1990).

GPR has several properties making it useful for monitoring 
and fault detection, such as probabilistic prediction including 
an uncertainty estimate, flexible regression in a nonparametric 
fashion, and it is relatively simple to implement in common 
programming languages. GPR has been used for monitoring 
and fault detection in different applications (Roberts et al. 
2012), such as maritime vessel track analysis (Smith et al. 
2012), change point detection (Garnett et al. 2010) and pro-
cess monitoring (Serradilla et al. 2011). GPR has also been 
used in environmental applications, such as monitoring and 
fault detection in water monitoring signals (Samuelsson et al. 
2017), modelling of an anaerobic wastewater treatment system 
(Ni et al. 2012), modelling nitrification process and biomass 
growth (Ažman and Kocijan 2007) and control of a sequenc-
ing batch reactor (Kocijan and Hvala 2013).

GMM is an alternative machine learning method to GPR 
for data monitoring. GMM is a parametric probability model 
for density estimation using a mixture of Gaussian distribu-
tions (Bishop 2007). In this way, the GMM can describe a 
set of data using the combination of Gaussian distributions. 
Applications of GMM in data monitoring can also be found 
in the literature, for example in sensor monitoring (Zhu et al. 
2014), fault detection and diagnosis (Jiang et al. 2016; Yu 
2012). Some other applications include data classification 
(Bouveyron 2014), image segmentation (Greggio et al. 2011) 
and many others.

The objective of this study is to compare the performance 
of GPR and GMM as tools for monitoring and fault detec-
tion of sludge profiles in a secondary settler tank. The paper 
is organized as follows. First, a general introduction to GPR 
and GMM is presented. Then, the case study is detailed, and 
a fault detection criterion based on GPR and GMM is then 
formulated. Next, results and discussion are shown, and some 
conclusions are drawn.
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Gaussian process regression

A Gaussian process (GP) is a collection of random variables 
which has a joint Gaussian distribution. Assume we observe 
some input xi and some output yi from a certain process and 
that yi = f (xi) . Then, the GP is completely specified by its 
mean �(xi) and covariance function k(xi, xj) , and a distribution 
over the function f (xi) can therefore be expressed as

Typically, the covariance functions involve a vector 
� = [�1,… �z] of parameters (called hyperparameters). Given 
a data set � = (�, �) , the simplest approach to optimize these 
hyperparameters is to maximize the log-marginal likelihood 
log p(� ∣ �)

where � =
[
x1,… , xN

]T and � =
[
y1,… , yN

]T are vectors 
with N observed data with Gaussian noise of variance �2 , 
�� = k�(�, �) is a N × N covariance matrix of the training 
data set and I is a N × N identity matrix [see more details in 
Rasmussen and Williams (2005)].

A regression in a GP means that, based on the data set � , 
and a new input x∗ , we want to find the predictive distribution 
of the associated output y∗ . The predictive distribution of y∗ 
over � is Gaussian described by

with mean �∗(x∗) and covariance �2
∗
(x∗) given by (Rasmus-

sen and Williams 2005)

where �∗ =
[
k(x1, x∗),… , k(xN , x∗)

]T is a N × 1 vector of 
covariance between the test and the training data set and 
k∗∗ = k(x∗, x∗) is the autocovariance of the test data set.

(1)f (xi) ∼ GP
(
�(xi), k�(xi, xj)

)
.

(2)

𝜃̂ = arg max
𝜃

(
−
1

2
�T(�𝜃 + 𝜎2I)−1� −

1

2
log(∣ �𝜃 + 𝜎2I ∣) −

N

2
log(2𝜋)

)
,

(3)p(y∗ ∣ (�, �), x∗) = N(�∗(x∗), �
2
∗
(x∗)),

(4)�∗(x∗) = �T
∗
(�� + �2I)−1�,

(5)�2
∗
(x∗) = k∗∗ − �T

∗
(�� + �2I)−1�∗,

To obtain the predictive mean and covariance, an 
appropriate covariance function has to be selected by 
the user. The covariance function determines the model 
structure of the GPR; therefore, a prior knowledge of the 
process is useful to determine a good candidate for this 
function. For example, a typical choice is the squared-
exponential covariance function, which has the form 
k�(xi, xj) = �1 exp

[
−�2(xi − xj)

2
]
.

Gaussian mixture models

Assume again the data set � from a certain process, formed 
by N independent observations. One way to model these data 
is by mixture of models, where the aim is to represent certain 
subpopulations from the whole data set by means of a certain 
conditional probability density (binomial, exponential, etc.) 
(Južnič-Zonta et al. 2012). In the case of Gaussian mixture 
models, the distribution of the observation �n is modelled as 
a sum (or mixture) of several Gaussian distributions (Murphy 
2012)

where �k represents the mean and �2
k
 represents the covari-

ance matrix of the k-distribution. Hence, expression (6) is 
a combination of K Gaussian distributions, where each of 
them has a mixing weight �k . These mixing weights must 
satisfy 0 ≤ �k ≤ 1 and 

∑K

k=1
�k = 1 . The resulting function 

p(�n) is a probability density function from observing the 
data �n.

Once the value K is specified, the GMM parameters 
�k,�k and �k can be inferred by using the iterative expec-
tation–maximization (EM) algorithm applied to Gaussian 
mixtures (Murphy 2012). EM is a technique used to find 
maximum likelihood solutions for probabilistic models 
containing variables that are not directly observed but can 
be inferred (Bishop 2007). EM applied to GMM is sum-
marized in Algorithm 1.

(6)p(�n) =

K∑

k=1

�kN(�n|�k, �
2
k
),
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One way to assign a value for the number for Gaussian 
distributions K is using the silhouette criterion; see details 
in Rousseeuw (1987). This criterion calculates a silhouette 
value S which indicates how similar samples are in one 
cluster to samples in another cluster. S ranges from − 1 
(data misclassified) to + 1 (data well clustered), whereas S 
close to zero means that the clusters are indistinguishable.

Fig. 1   a Experiment setup; b 
typical sludge profile plotted as 
level versus SS concentration

(a) (b)

Case study: monitoring a SST in a WWTP

The present approach was evaluated using real data from a sen-
sor installed in a SST at Bromma WWTP in Stockholm, Swe-
den. The sensor goes from the top to the bottom of the settler, 
passing through the clarification and the thickening zone. In 
this way, the sensor measures the level (m) and the SS concen-
tration (g/L), as shown in Fig. 1a. The profile obtained is called 
sludge profile. A typical sludge profile is shown in Fig. 1b.
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the probability density function pv1 (ym) and pv0 (ym) , in which 
m indicates the profile number at which �m is calculated.

A common way to detect possible changes in ym is by 
analysing its residual rm , which is related to the distance 
between data in normal and possible faulty conditions. 
Therefore, in normal condition rm is equal or close to zero. 
Otherwise, it will increase and will belong to a possible 
faulty condition. Hence, the detection of a change in the 
residual can be done by detecting a change in the mean value 
of the sequence rm , i.e. in this work, the parameter v referred 
in (11) corresponds to the mean value of the residual cal-
culation of ym.

Assume that rm follows a Gaussian distribution N(𝜇̃, 𝜎̃2) , 
where 𝜇̃ and 𝜎̃ are the mean and standard deviation of rm , 
respectively. The log-likelihood ratio test (Basseville and 
Nikiforov 1993) for a change in 𝜇̃ is expressed by

where 𝜇̃0 is the mean value in normal condition and 𝜇̃1 is 
the possible change we want to detect. 𝜇̃1 is calculated by 
collecting data in a moving window. Expression (13) can be 
used in (12) to calculate �m recursively.

A  fa u l t  i s  d e c i d e d  i f  𝜀m > h𝜀  ,  w h e r e 
h� = ��max (�m)

||1≤m≤T0 is a threshold value which is calcu-
lated taking the maximum value of �m obtained in normal 
condition for a certain predefined time T0 , and �� is a thresh-
old factor.

The next subsections show how to calculate the residual 
rm for GPR and GMM, denoted as rgp and rgm , respectively.

Residual calculation using GPR

Algorithm 2 is proposed to compute the residual value rgp 
using GPR.

(13)sm =
(𝜇̃1 − 𝜇̃0)

𝜎̃2

[
rm −

(𝜇̃0 + 𝜇̃1)

2

]
,

The sensor works periodically, and it means that a new 
sludge profile is automatically measured after a certain period 
of time. The sludge profile can be affected by different factors 
including: changes in the return and/or excess of sludge flow 
rates, sludge scape, large variations in the influent flow and 
composition, and sensor clogging or malfunctioning.

As part of the experiment, two additional measurements 
were recorded: the level at which the SS concentration is equal 
to 0.5 g/L (here referred as fluff level) and equal to 2.5 g/L 
(here referred as sludge level). We will refer to these levels 
during the results and discussion.

Fault detection criteria

Decision rule

The implementation of a fault detection (FD) method for a 
sensor signal ym involves detecting any significant change 
in the dynamic of ym when the sensor is subject to possible 
clogging or malfunctioning situation. A parameter v related 
to the dynamic of ym is assumed to belong to one out of two 
conditions

To decide between H0 and H1 , two FD methods are pro-
posed. These methods are based on GPR and GMM (see the 
next subsections), which use the following recursive deci-
sion rule (Basseville and Nikiforov 1993)

where �0 = 0 is  set  as the ini t ial  value and 
sm = ln

(
pv1 (ym)∕pv0 (ym)

)
 is the log-likelihood ratio between 

(11)
H0 ∶ v = v0 (normal condition),

H1 ∶ v = v1 (abnormal condition).

(12)𝜀m =

{
𝜀m−1 + sm if 𝜀m−1 + sm > 0

0 otherwise
,
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Note from (14) that the residual is calculated using the 
distance between the data and the predictive mean �∗ . Then, 
the more the data in the new profile that are outside the pre-
dictive distribution, the larger the residual rgp.

Regarding the covariance function, the selection depends 
on the case study. A common choice is to use a squared-
exponential function. However, if a particular dynamic of 
the data needs to be captured, a combination of different 
covariance function should be implemented, such as con-
stant, linear and sinusoidal. See studies by Wilson and 
Adams (2013), Lloyd et al. (2014) and Samuelsson et al. 
(2017) for some examples showing the choice of covariance 

functions to different data sets. In this case study, the sum 
of a linear and a squared-exponential function was found 
feasible, that is,

where (�1, �2, �3, �4) are hyperparameters.

Residual calculation using GMM

Algorithm 3 is proposed for the residual calculation rgm 
using GMM.

(15)k�(xi, xj) = �1 + �2xi + �3 exp
[
−�4

(
xi − xj

)2]
,

Fig. 2   a Sludge profiles used 
as training data set; b sludge 
profiles in a plotted using dots; 
c predictive distribution over 
the training data set, showing �∗ 
(red line) and ±2�∗ (grey zone); 
d contour of the GMM prob-
ability density function, with 
values indicated with colour 
scale
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the data in normal condition, the decrease in the probability 
density function and the increase in rgm.

Software

The software MATLAB was used for all the calculations 
and simulations. For the GPR implementation, the GPML 
toolbox (Rasmussen and Nickisch 2010) was used, whereas 
the GMM implementation was done with the function 
gmdistribution.

Results and discussion

This section shows the comparison between the GPR and 
GMM performances applied to the case study. We decided 
to choose x representing the level of the sensor and y = f (x) 
representing the SS concentration; hence, � = (x, y).

The training data set

A total of M = 15 sludge profiles in normal conditions were 
used as training data set for Algorithm 2 and 3; see Fig. 2a. 
Figure 2b shows the sludge profiles in normal conditions 
using dots.

The recursive decision rule [cf. (12)–(13)] was imple-
mented with a moving window of 10 profiles, with T0 = 4 d 
to compute the threshold value h� , and �� = 1.1 as threshold 
factor.

Fig. 3   Sludge profiles during 
the SST monitoring. a after 5 
days; b after 10 days; c after 15 
days; d after 20 days. First days 
coloured in dark blue, last days 
in dark red
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Fig. 4   a Fluff level (black line) and sludge level (brown line); b nor-
malized residual response for GPR (blue line) and GMM (red line); c 
normalized decision rule response for GPR (blue line) and GMM (red 
line), threshold for �� = 1.1 (black dashed line). Periods A and B are 
shown as grey zones

Note from expressions (16) that rgm is the inverse of the 
summation of the probability density function of the entire 
data set � . See that the farther the new profile data are from 
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The optimized GPR hyperparameters (cf. (15)) obtained 
were: 𝜃̂1 = 3.88 , 𝜃̂2 = −0.95 , 𝜃̂3 = 0.35 , 𝜃̂4 = 1.13 . Figure 2c 
shows the predictive mean value (red line) along with ±2�∗ 
(the predictive distribution of the standard deviation).

For GMM, the highest silhouette value was S = 0.77 with 
K = 3 , indicating that three is the optimal number of clus-
ters, as shown by the three Gaussian distributions in Fig. 2d. 
Following the notation presented in expression (6), the val-
ues for �k,�k and �k obtained for the GMM are expressed in 
the following probability density function

See in Fig. 2a–b that a typical sludge profile shows an abrupt 
change in the SS concentration from values close to zero to 
values larger than 1g∕L , and then, this concentration keeps 
increasing as the sensor approaches the bottom of the SST. 
This change in the concentration was captured by the GPR 
and GMM. For GPR, the mean predictive decreases from top 
to bottom of the SST, passing through the data set, with the 
predictive standard deviation covering almost all the points. 
In the case of GMM, it classifies data before and after the 
jump as two separate Gaussian distributions. Note also that 
data for high concentration and low SST level were classified 
with another Gaussian distribution.

Monitoring of the SST

Several trials were done to monitor the settler. As illustra-
tion, we show one trial which lasted for 23 days, where a 
new sludge profile was collected every 15 min, giving a 
total of 2208 profiles. The evolution of the profiles during 
time is shown in Fig. 3a–d after 5, 10, 15 and 20 days of 
the experiment, respectively.

p(�) = 0.43 N

(
�|

(
4.11

0.10

)
,

(
0.71 −0.02

−0.02 0.01

))

+ 0.34 N

(
�|

(
1.82

1.51

)
,

(
0.36 −0.18

−0.18 0.15

))

+ 0.23 N

(
�|

(
0.47

3.34

)
,

(
0.09 −0.12

−0.12 0.36

))
.

Fig. 5   Group of sludge profiles 
for periods indicated in Fig. 4a. 
For GPR: a Period A, b Period 
B. The plots include the predic-
tive mean of the training data 
set (black line). For GMM: c 
Period A, d Period B. The plots 
include the contours of the 
probability density function of 
the training data set
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Table 1   Summary of GMM and GPR performance for different ��

�� Method Δt
FD
[d]∕t

FD
[d] FA[#]∕t

FA
[d]

Period A Period B Rest of time

1.1 GMM 0.25/0.65 0.01/5.22 3/0.51
GPR –/– 4.81/0.35 0/–

1.25 GMM 0.26/0.62 0.02/4.74 3/0.21
GPR –/– 4.91/0.22 0/–

1.5 GMM 0.29/0.58 0.04/4.04 0/–
GPR –/– –/– 0/–

1.75 GMM 0.41/0.40 0.06/3.66 0/–
GPR –/– –/– 0/–

2.0 GMM 0.5/0.25 0.96/3.34 0/–
GPR –/– –/– 0/–
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Figure 4 shows the profile of the fluff and sludge level, 
and the profile of the residuals (rm) and the decision rule 
(�m) calculated via GPR and GMM approach.

There are two periods to highlight in Fig. 4, marked as 
Periods A and B. The sludge profiles of these periods are 
shown in Fig. 5, which also includes the GPR predictive 
mean and the GMM probability density function. Period A 
corresponds to variations in the residual profiles observed 
in days 12–13. The profiles of this period show that the 
concentrations between 1 and 2 g/L are in a higher level 
with respect to the level in the training data set (see Fig. 5a 
and c). This gave a certain variation in the fluff level as 
seen in Fig. 4a. This behaviour was mainly captured by the 
GMM approach (see Fig. 4c).

Period B refers to an event related to sensor clogging 
occurring after day 17. This event was confirmed by an 
in situ ocular inspection of the sensor and the presence of 
floating sludge at the surface level of the settler, causing 
sludge scape in the effluent. The profiles of this period 
are shown in Fig. 5b and d, where concentrations in the 
range of 0–2 g/L are far from the GMM probability density 
region and far from the GPR predictive mean. As seen in 
Fig. 4c, this event was first captured by the GMM which 
shown a persistent increasing in the decision rule. This 
event was also captured by the GPR after day 20.

The sludge level profile (see Fig. 4a) did not show any 
significant change during Period A; however, it showed a 
change late in Period B after day 20. Compared to the fluff 
level (level at 0.5 g/L), the sludge level (level at 2.5 g/L) did 
not fluctuate from its initial position, as it can be observed 
from the sludge profiles in Fig. 3, where most of the level 
fluctuations in the sludge profiles were in the range of 
0–2 g/L.

When comparing the performances of GPR and GMM, 
the GMM gives a more fluctuate dynamics during the exper-
iment. This can be seen in the behaviour of the residuals 
in Fig. 4b. Since a Gaussian function decreases faster than 
a linear function, then data far from maximum values of 
the GMM probability density function will give a higher 
residual than data far from the GPR predictive mean (cf. 
expressions (14) and (16)).

See that when using �� = 1.1 , GMM produces higher val-
ues than GPR during normal conditions (i.e. false alarms); 
see the responses between days 13 to 17. However, this 
behaviour will depend on the �� used for the evaluation of 
the decision rule. A higher �� might reduce the events of 
false alarms. To see this more in detail, the performance of 
GMM and GPR was also evaluated for different values of �� 
using the following indicators:

•	 Delay of fault detection (ΔtFD) : time spent by �m to reach 
the threshold.

•	 Time in fault detection (tFD) : duration when the detector 
correctly indicates a fault, i.e. time spent by �m above 
threshold in fault detection condition.

•	 Number of false alarms (FA).
•	 Time in false alarm (tFA) : duration when the detector 

incorrectly indicates a fault, i.e. time spent by �m above 
threshold in false alarm condition.

The evaluation was done for Periods A, B and the rest 
of the experiment time. The results are summarized in 
Table 1.

See that the table includes the case shown in Fig. 4 when 
�� = 1.1 . As expected, when �� increases, the time delay 
to detect a fault also increases, whereas the time the deci-
sion rule expends in faulty condition decreases. See also 
that when �� increases, the time in false alarm decreases. 
When �� = 1.5 , the GMM performance is superior to GPR, 
i.e. it gave fault detections in both periods with relatively 
short time delay and with no false alarms. A threshold factor 
above 1.5 will also avoid false alarms but will also increase 
the fault detection time of GMM.

Concluding remarks

An important aspect in the GMM method is the definition of 
the amount of Gaussian distributions that describe the data 
set. In a given data set, the parameters involved in the GMM 
should be determined together with a value that indicates 
how well clustered is the data set, in our case by using the 
silhouette criterion. This criterion should be evaluated for 
different numbers of clusters, in order to find the optimum 
data clustering.

Regarding the GPR method, a key aspect for determin-
ing the predictive mean is the selection of the covariance 
function. In our case study, the covariance function (cf. 
expression (15)) was formed by two functions: a linear and a 
squared-exponential function. A linear function was required 
to capture the shape of typical sludge profiles. The squared-
exponential function can be seen as a smoothing function. 
For any other process profiles, a new definition of the covari-
ance function should be made.

Note that the data in the sludge profiles include outli-
ers, defined as sharp changes between two successive data 
points. These outliers mean that measure concentrations are 
far from the values shown by profiles in normal condition. 
If there are few outliers in a profile, a possible task in the 
fault detection is to perform data correction, i.e. to replace 
outliers using data from the training data set. In this work, 
the correction of outliers was not part of the study.

Another possible situation in data monitoring is missing 
data. This situation did not happen in our case study, but 
it is common in other process monitoring applications. As 
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discussed for the case of dealing with outliers, a missing 
data can be reconstructed by using data from the training 
data set. See Samuelsson et al. (2017) where the case of 
missing data is evaluated for some GPR-based approaches.

It is important to recall that two sensors measuring 
the same variable in the same reactor will give two non-
identical data sets. It means that each sensor will have a 
unique predictive mean and standard deviation for the case 
of GPR, as well as a unique probability density function 
for the case of GMM. It follows that the present methodol-
ogy has the advantage that it can be applied to sensors in 
diverse areas.

One of the several applications of the current approach 
could be to use the decision rule of the FD algorithms as a 
tool for control actions. Therefore, new control strategies 
could include this variable as useful information to perform 
further tasks, for example, changing the recycle flow rate of 
the WWTP in order to keep the sludge profiles in a prede-
fined level, or to give an early alarm that the SS sensor of the 
settler tank might need a supervision or a cleaning action.

Conclusions

This study tested two machine learning techniques, GPR 
and GMM, for monitoring the sludge profiles (level vs. 
suspended solid concentration) of a secondary settler tank 
in a wastewater treatment plant. The main idea was to train 
these two methods by using a set of sludge profiles in nor-
mal conditions and then perform the test by monitoring 
new sludge profiles.

The results show that GMM gave a fast fault detection 
than GPR, but GMM also shows to be more sensitive to 
false alarms. Nevertheless, it was possible to avoid the false 
alarm condition with a proper setting of the threshold factor.

Both methods have shown to be potential tools for mon-
itoring sludge profiles. They could be applied for getting 
useful information about the performance of processes 
with repetitive profile data and to detect possible abnor-
mal conditions.
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