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Abstract: In this paper, we consider the problem of detecting sensor faults in the aeration system of an 
activated sludge process. The purpose is to detect possible faults in the dissolved oxygen sensors. The 
dissolved oxygen concentration in each aerated zone is assumed to be automatically controlled. As the 
basis for a fault detection algorithm we propose to use the ratio of air flow rates into different zones. The 
method is evaluated by using the Benchmark Simulation Model nº1 (BSM1) via Monte Carlo simulations. 
Results show that this method gives a good performance in terms of a correct an early fault detection and 
isolation. 
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INTRODUCTION 

Fault detection and isolation is an active area of research due to increasing complexity 
of industrial processes and growing demand for safety and reliability. In general, given 
an industrial process with multiple sensors and actuators, fault detection techniques 
applied to this process will depend on if the aim is to detect faults from single or 
multiple variables. The variables can be signals from sensors and/or actuators.  

Several fault detection techniques have been developed in wastewater treatment plants, 
considering the monitoring of aeration in a single zone (Corominas et al., 2011), as well 
as the monitoring of other process variables like flow rate, pH, ammonia, temperature 
(Rosen and Lennox, 2001; Choi and Lee, 2004; Baggiani and Marsili-Libelli, 2009). 
Steyer et al. (2001) study two kinds of faults in an anaerobic digestion processes: abrupt 
and incipient (e.g. drift changes). The first type occurs when the process state changes 
quickly and is in general easier to detect than the second type. 
In Corominas et al. (2011), the sensor fault detection in systems under feedback control 
was studied. This problem poses special challenges, since if a sensor signal is used in a 
feedback control law, a fault in the sensor may not be visible from the sensor signal 
itself because the controller strive to keep (the possible faulty) sensor signal equal to the 
set point.  

In this paper, the problem to detect sensor faults in the aeration system of an activated 
sludge process (ASP) is considered, in particular faults in dissolved oxygen (DO) 
sensors under closed loop control. Therefore, the case study consists of fault detection 
in a process with a number of aerated zones, assuming that the DO concentration in 
each zone is automatically controlled by adjusting the airflow rate.  
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As the basis for the fault detection algorithm we propose to monitor the ratio of airflow 
rates into different zones. The reason is that these ratios are less dependent on the 
influent load compared to using the individual airflow rates separately. The behavior of 
the ratios for different fault locations allows the development of an incidence matrix 
which is used to get the isolation of the fault. 

The paper is organized as follows. First, two methods for detecting faults in DO sensors 
are outlined. Next, a set of evaluation indexes are defined and a simulation protocol is 
outlined. Then, a case study using the BSM1 is presented and the results from the 
methods are shown. Finally, the results are discussed and conclusions are drawn. 

METHOD 

An ASP with N aerated zones in series is considered. The DO in each zone is in closed 
loop control by individual adjustments of the air flow rate into each zone. It is assumed 
that the air flow rate is measured and a possible fault occurs in one of the DO sensors. 
Just one fault per zone at a time is considered in this study. If also faults may occur in 
the air flow rate sensors it will not be possible to distinguish those faults from the faults 
in the DO sensor and we will then only have the possibility to decide in which zone 
there is a sensor (DO or air flow rate) fault. 

The Airflow Method (AM) 
A very simple method to detect a faulty DO sensor is by monitoring the airflow rate in 
every zone. In this method, a sensor fault in zone i is decided if: 

			 			  (1) 

where ai and bi are the minimum and maximum bounds respectively, defined as: 

∙
∈

     ;      ∙
∈

(2) 

where: 

q t  is a low-pass filtered value of the airflow rate into zone i. 
 and 	are threshold factors used to define the lower and upper bounds, 

respectively.  
A is a set of data in non-faulty conditions. 

The Airflow Ratio Method (ARM) 
A slightly more sophisticated approach is to monitor the ratio of the airflow rates 
between the zones. ARM calculates maximum values on airflow rate ratios between 
zones during normal (non-faulty) conditions, and uses these values as bounds for 
detecting a fault. In this method, a sensor fault is decided if: 

, , 			;	  for 	i 1, 2, … , N; 			j 1, 2, … , N		 i j  (3) 
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where:  

, / .	
q t  is a low-pass filtered value of the airflow rate into zone i.  

, , ∙ , ,	is	the	threshold	value.	

,  is a threshold factor. 

, /
∈

.	

 A is a set of data in non-faulty conditions. 

Given N zones, there are N(N-1) airflow ratios , . Therefore, a fault is decided if 
any of these ratios is above its threshold value. 

Fault isolation 
Since AM is based on the signal monitoring in every zone, the fault isolation in zone i is 
decided when a sensor fault in zone i is decided. 

For ARM, the method to decide a fault isolation in zone i has to be different since the 
decision for a fault detection is based on the ratio of variables. For example, consider 
the response of ARM for the case of a negative bias in the DO sensor of zone i. In this 
case the airflow rate in this zone will tend to increase, then all the fi,j ratios are likely to 
be greater than , . On the other hand, if the fault is a positive bias in the DO sensor 
of zone j, the airflow rate in this zone will tend to decrease, then all the fi,j ratios are 
likely to be greater than , . Therefore, different faults correspond to different ratio 
responds.  

A basic way to classify these results is by using binary evaluation of every airflow ratio 
against the thresholds (Gertler, 1998). This structure gives an observed fault signature 

, . Applications of the observed fault signature can be found in Fagarasan and Iliescu 
(2008), used as a tool to isolate the fault source. Making use of this structure we get: 

For a negative bias in the DO sensor of zone i: 

,
1
0
				
if		 , ,

otherwise
   for  1, … , ; 	 1, … , 		   (4) 

For a positive bias in the DO sensor of zone j: 

,
1
0
					
if		 , ,

otherwise
for  1, … , ; 	 1, … , 		   (5) 

These observed fault signatures allows isolation of a faulty DO sensor. The observed 
fault signature for every scenario can be ordered in an incidence matrix. Regarding 
biological processes, the incidence matrix has previously been used for isolation of 
multiple actuator and sensor faults in a waste water treatment process (Fragkoulis et al., 
2011), as part of a methodology for fault measurement detection in a urban water supply 
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network (Ragot and Maquin, 2006), and as part of a fault diagnosis algorithm applied to 
sewer networks (Meseguer et al., 2010). Table 1 shows the incidence matrix for the case 
of N=3 (i.e., 3 zones in series). 
 

Table 1. Incidence matrix for 3 zones in series 
 ,  ,  ,  ,  ,  ,  

negative bias in DO1 1 1 0 0 0 0 
negative bias in DO2 0 0 1 1 0 0 
negative bias in DO3 0 0 0 0 1 1 
positive bias in DO1 0 0 1 0 1 0 
positive bias in DO2 1 0 0 0 0 1 
positive bias in DO3 0 1 0 1 0 0 

 
 
Index for evaluation of fault detection performance 
Based on the observed fault signature described previously, a set of indexes are 
proposed in order to evaluate and compare the performance of the different fault 
detection methods in terms of detection and isolation. These indexes are calculated 
considering the time of the fault occurrence, the time of fault detection and the time of 
fault isolation, see Figure 1. 
 

 
Figure 1. True sensor status (black line), the time when a fault is detected (dashed black) and the time 
for isolation (dashed gray). 
 
In figure 1, tfault, td and ti are the time of the fault occurrence, the time of the fault 
detection and the time of the fault isolation, respectively. Δtd and Δti are the times 
needed for the fault detection (Δtd = td - tfault) and fault isolation (Δti = ti - tfault), 
respectively. tend is the total evaluation time. The sensor status is represented by a binary 
variable where the values 0 and 1 refer to non-faulty and faulty sensor, respectively. 
 
In order to evaluate the performance of the algorithms in terms of the percentage of 
fault detections, false identifications, and false alarms, the following indexes are used: 
  

∑ ∙ 100 where:   1
0
		
if		

otherwise
		 (6) 

 

∑ ∙ 100 where:    1
0
			if		

otherwise
    (7) 

 

∑ ∙ 100 where:    1
0
			
if		
otherwise

  (8) 
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where FD is the percentage of fault detections; FI is the percentage of fault isolations 
and FA is the percentage of false alarms. M refers to the total number of simulation 
runs, and k refers to the kth simulation.  
 
For AM the time of the fault detection and the time of the fault isolation are the same 

. When ARM is used, the decision of fault detection and fault isolation are 
made separately. Therefore, in order to take into account the time involved in the fault 
detections and isolations, a fault detection index (IFD) and fault isolation index (IFI) have 
been defined as follows: 
 

100
·

1
1

1

][ 
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k
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end
FD t
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I    (9) 

 

where:   
Δ

			for	a	correct	fault	detection
otherwise
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where:   
Δ

			for	a	correct	fault	isolation
otherwise

   

 
Given a correct fault detection	 , a value of IFD close to 100 is given 

when FDt is close to 0 (this is,  is close to ), indicating a short time delay in the 
fault detection. Similarly, given a correct fault isolation	 , a value of IFI 
close to 100 is given when FIt is close to 0 (this is,  is close to ), indicating a short 
time delay in the fault isolation. Therefore, values of IFD and IFI close to 100 indicate a 
good performance in terms of fault detection and fault isolation, respectively. 
 

CASE STUDY: 3 Zones in BSM1 

The BSM1 (Copp, 2002) was selected as the simulation platform. The BSM1 includes 
model, plant layout (pre-denitrification plant with five activated sludge zones in series, 
two anoxic and three aerobic), control systems and a benchmark procedure. The system 
was simulated using the MATLAB/Simulink® platform.  
 
Three different dynamic influents were considered: dry, rain and storm. The simulation 
time was extended from 14 to 21 days in order have some more days for the fault 
detection evaluations. The DO feedback PI-control in zone 5 was also applied to zone 3 
and 4 (see Figure 2). Every control loop has a set-point of 2 mgO2/l. The nitrate 
feedback PI-controller in the second anoxic compartment is kept as by default. We use 
the notation DOj for the DO sensor in zone j. 
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Figure 2. Case study 

 
 
Sensor modeling 
The sensor models are based on the study given by Rieger et al. (2003). The DO sensors 
belong to class A, and have a response time of 1 min in non-faulty conditions, a 
measurement range of 0–10 mgO2/l and a noise standard deviation of 0.25 mgO2/l. 
Details of the sensor model can be found in Rosen et al. (2008) and Corominas et al. 
(2010). 
 
 
Fault modeling 
The implementation of the faults was assessed based on the approach developed by 
Corominas et al. (2011) and previous work given by Rosen et al. (2008). Here, fault 
vectors with five elements (v1, …, v5) are defined for the different type of faults. Table 
2 shows the fault vector related to different sensor statuses. These elements add and/or 
multiply certain values to the true value in order to model the correspondent sensor 
status. The parameters of the fault implementations are fb (bias), fg (doubling of the 
slope of calibration curve), fr (drift speed) and co (calibration speed). 
 

Table 2. Vector used to describe different faults (taken from Corominas et al. 2010) 

Sensor status 
Fault vector 

[v1 v2 v3 v4 v5] 
1. Fully functional [1 0 0 1 0] 
2. Shift [1 fb 0 1 0] 
3. Excessive drift [1 -(t-t0)·fr 0 1 0] 
4. Fixed value [0 0 0 0 1] 
5. Complete failure [0 0 0 1 0] 
6. Wrong gain [fg 0 (1-fg)·c0 1 0] 
7. Calibration [0 0 0 0 1] 

 
 
This study will focus on bias errors and new noise levels in the DO sensor. Regarding 
the bias, this type of fault is named as “shift” in Table 2. Therefore a bias is added via 
the fb parameter. In this study, fb has a range of 0–1 mg/l. About the noise fault, a new 
noise level is added to the sensor model, because this type of fault is not defined in 
Table 2.  
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Simulation Protocol 
The protocol to evaluate the performance of AM and ARM is described as follows: 
 
Step 1: A number of dynamic simulations are executed for different influent events 

(dry, rain and storm) in non-faulty conditions. Here, the thresholds for AM and 
ARM algorithms are calculated. 

 
Step 2: An influent event (dry, rain or storm) and a faulty DO sensor (zone 3, 4 or 5) 

are selected.  
 

Step 3: BSM1 is simulated for 150 days in order to reach steady state conditions.  
 

Step 4: A dynamic simulation is performed during 21 days. Here, the time of the fault 
event (tfault in Figure 1) is generated via Monte Carlo method. This is, the 
domain of the possible fault time is defined (in this case, the fault may occur 
between day 7 and 14); then, the fault time is generated randomly from a 
probability distribution over the domain. The performance indexes are 
calculated during the 21 days in order to also detect false alarms. 

 
Step 5: If the kth run is ˂ M (total number of simulations), go to Step 3. Otherwise, go 

to Step 2. 
 
 
Simulation Scenarios 
The case study is tested considering different location of the faulty sensor (in zone 3, 4 
and 5); three influent conditions (dry, rain and storm); two types of faults (bias and a 
changed noise level), assuming that there is only one type of fault generated at a time 
for any scenario, and different threshold factors ( 1.02 and 1.05), this is, the 
threshold values for AR ( 	; 	 ) and for ARM ( , ) were calculated considering a 
value of 1.02 (2%) and 1.05 (5%). 
 
Currently no air flow model is defined in BSM1. For simplicity, KLa was selected as the 
monitored variable for AM and ARM algorithms. In practice, the measurement of the 
air flow rate should obviously be used. 
 
Concerning the parameters of the simulations, it was assumed a sample time of 1 minute 
for the KLa-values, and a low-pass filtered implemented by a moving average window 
of 15 samples. By default, the threshold values for AR ( 	; 	 ) and for ARM ( , ) were 
calculated with 1.05. The total number of simulations (see M value in previous 
section) for every influent event and faulty simulations is M = 20. 
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RESULTS 

Illustrative example 
We will first illustrate the method when a positive bias of 1mgO2/l is applied to the DO 
sensor in zone 5 (DO5). Figure 3 shows the airflow ratio profiles in non-faulty and 
faulty conditions. 
 

 
 

 

 

Figure 3. Airflow ratio response in normal conditions (fi,j in black), and when a bias of 1mgO2/l is 
applied in DO5 (fi,j

(*), in gray). The thresholds (in dashed gray) and the fault occurrence (in dashed black) 
are shown. 
 
In this particular example, the positive bias fault in DO5 happens at 10.92d. Using the 
incidence matrix given in Table 1, the observed fault signature for this scenario is 
showed in Table 3. 
 
 

Table 3. Observed fault signature for a positive bias in DO5  
 ,  ,  ,  ,  ,  ,  

positive bias in DO5 0 1 0 1 0 0 
 
 
It can be observed in Figure 3 that f4,5 is the first ratio above the threshold, yielding 

, 1, therefore a sensor fault is decided. The second ratio above the threshold is f3,5, 
giving , 1. Hence, a fault in DO5 is decided. Furthermore, note the delay in the 
fault detection (Δtd) and the delay in the fault isolation (Δti).  
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Detection of bias faults 
Detection of faults due to a bias in the DO sensors was studied. Table 4 summarizes the 
results of the index evaluation for AM and ARM when a bias of 1 mgO2/l is applied. 
The evaluation considers different influent conditions (dry, rain and storm), and location 
of the fault sensor (zone 3, 4 and 5). 
 

Table 4. Index results for detection of bias faults 
Inf. Zone Method Δtd [d] Δti [d] FD [%] FI [%] FA [%] IFD [%] IFI [%] 

Dry 

3 
AM 1.75 +/- 1.67  100 100 0 91.7 83.4 

ARM 0.03 +/- 0.03 0.18 +/- 0.17 100 100 0 99.9 98.3 

4 
AM 0.54 +/- 0.52  100 100 0 97.5 94.9 

ARM 0.07 +/- 0.09 0.46 +/- 0.24 100 100 0 99.7 95.6 

5 
AM 0.61 +/- 0.81  100 100 0 97.1 94.2 

ARM 0.21 +/- 0.21 0.32 +/- 0.27 100 100 0 99.0 97.0 

Rain 

3 
AM 0.59 +/- 0.45  100 100 0 97.2 94.3 

ARM 0.03 +/- 0.05 0.07 +/- 0.1 100 100 0 99.9 99.3 

4 
AM 0.82 +/- 0.81  90 100 10 93.3 85.4 

ARM 0.03 +/- 0.02 1.93 +/- 1.62 95 100 5 97.5 78.3 

5 
AM 1.56 +/- 1.45  100 100 0 92.6 85.2 

ARM 0.62 /- 0.77 1.55 +/- 1.45 100 100 0 97.1 85.2 

Storm 

3 
AM 0.58 +/- 0.58  100 75 0 97.3 64.3 

ARM 0.05 +/- 0.06 0.11 +/- 0.1 100 100 0 99.8 99.0 

4 
AM 0.69 +/- 0.63  100 75 0 96.7 63.4 

ARM 0.07 +/- 0.09 0.78 +/- 0.60 100 90 0 99.7 93.4 

5 
AM 1.47 +/- 1.44  100 100 0 93 86.0 

ARM 0.45 +/- 0.43 1.01 +/- 0.98 100 100 0 97.9 90.4 

 
The effect of different levels of bias was studied in order to evaluate the performance of 
the AM and ARM in terms of fault detections and false alarms. For that, a range in bias 
from +/- 0.25 to +/- 1 mgO2/l was considered. The non-faulty condition (0 mgO2/l) is 
also included in this evaluation. This study considered different locations of the faulty 
sensor (zone 3, 4 and 5); and different influent conditions (dry, rain and storm). Results 
of the percentage of fault detections (FD) and false alarms (FA) are shown in Figure 4. 
 

 Zone 3 Zone 4             Zone 5 

Dry 

Rain 

Storm 

Figure 4. Percentage of fault detection (FD) and false alarms (FA) for AM and ARM methods considering the 
scenario of bias faults. 
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Detection of changes in the noise level 
The effect of changes in the noise level was studied as another example of fault in the 
DO sensors. In this case, an increase in the noise standard deviation (nσ) from its default 
value (0.25 mgO2/l) was used. Table 5 summarizes the results of the index evaluation 
for AM and ARM when the noise standard deviation is changed to 1 mgO2/l. The 
evaluation considers different influent conditions (dry, rain and storm), and location of 
the fault sensor (zone 3, 4 and 5). 
 

Table 5. Index results for detection of changes noise level 
Inf. Zone Method Δtd [d] Δti [d] FD [%] FI [%] FA [%] IFD [%] IFI [%] 

Dry 

3 
AM 5.28 +/- 2.09  15 66.67 0 11.23 6.60 

ARM 1.19 +/- 1.09 3.11 +/- 2.08 95 84.21 5 89.59 57.91 

4 
AM 1.10 +/- 1.27  100 100 0 94.72 89.46 

ARM 0.47 +/- 0.72 1.77 +/- 1.27 100 95 0 97.76 84.01 

5 
AM 1.00 +/- 1.00  100 100 0 95.21 90.44 

ARM 0.43 +/- 0.31 0.71 +/- 0.59 100 100 0 97.94 93.22 

Rain 

3 
AM 1.28 +/- 1.28  55 100 0 51.63 56.16 

ARM 0.84 +/- 0.71 2.41 +/- 2.09 100 95 0 96 74.52 

4 
AM 2.47 +/- 1.85  100 100 0 88.22 76.39 

ARM 0.40 +/- 0.55 2.83 +/- 1.61 100 100 0 98.07 72.97 

5 
AM 1.67 +/- 1.42  100 100 0 92.03 84.04 

ARM 0.32 +/- 0.24 0.83 +/- 0.66 100 100 0 98.47 92.05 

Storm 

3 
AM 1.42 +/- 1.06  65 100 0 60.60 61.33 

ARM 0.84 +/- 0.70 2.11 +/- 1.64 90 94.44 10 86.38 67.60 

4 
AM 1.71 +/- 1.41  100 100 0 91.81 83.64 

ARM 0.40 +/- 0.37 1.96 +/- 1.14 100 100 0 98.09 81.29 

5 
AM 1.20 +/- 1.11  100 100 0 94.27 88.57 

ARM 0.46 +/- 0.44 0.84 +/- 0.72 100 100 0 97.78 91.92 

 
Figure 5 shows the results of the percentage of fault detections (FD) and false alarms 
(FA) when a change in the noise standard deviation is changed from 0.25 to 0.5 and to 1 
mgO2/l. 
 

 Zone 3 Zone 4                Zone 5 

Dry 

Rain 

Storm 

Figure 5. Percentage of fault detection (FD) and false alarms (FA) for the AM and ARM methods considering the 
scenario of change in noise level. 
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Influence on the threshold parameters 
The definition of the thresholds involves a compromise between fast fault detection and 
low false alarm frequency. A low value of the thresholds increases the sensibility to the 
fault detections but also increases the false alarms. On the other hand, a high value of 
bounds reduces the false alarms but also reduces the ability to detect faults. Therefore, 
changes in the threshold levels were considered in order to see its effect in the 
performance of the AM and ARM techniques. Two levels of thresholds were tested: 
α 1.02 (2%) and 1.05 (5%). Figure 6 shows the influence of the threshold in the 
performance of AM and ARM for different levels of bias. Results are shown for the 
case of dry weather influent and DO3 as the faulty sensor. 
 
 

  

Figure 6. Results of AM and ARM under different bias faults (from 0 to +/- 1mgO2/l), for two thresholds ( 1.02 
(2%) and 1.05 (5%)). Results are shown for dry condition and DO3 as the faulty sensor. 
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Figure 7 shows the influence of the threshold in the performance of AM and ARM for 
different levels of noise. Results are shown for the case of dry weather and DO3 as the 
faulty sensor. 
 

 

Figure 7. Results of AM and ARM when the standard deviation of the sensor noise is changed to 0.5 and 1 mgO2/l, 
for two thresholds ( 1.02 (2%) and 1.05 (5%)). Results are shown for dry condition and DO3 as the faulty sensor. 

 

DISCUSSIONS 

The results in this study show the performance of a simple fault detection algorithm, 
ARM, developed in order to detect faults in the dissolved oxygen sensor during closed 
loop control. The new approach is compared with AM, which monitor the aeration in 
every zone.  
 
For AM the time for fault detection and isolation is the same, since this technique gets 
the detection and the isolation from the monitoring of one variable per faulty sensor. In 
the case of ARM, regarding the observed fault signature, the time instant for detection 
and for isolation is different. Therefore, the index definition for fault detection and 
isolation (based on the detection delay time and isolation time) allows comparing 
different monitoring techniques in terms of the number of successful detections and 
isolations, time for the decisions and false alarm frequency.  
 
Table 4 shows that for the case of 1 mgO2/l of bias, similar results are obtained with 
AM and ARM in terms of the amount of fault detection FD and isolation FI (see also 
Figure 3 for 1 mgO2/l of bias). However, taking into account the instant of isolation, the 
index IFI shows better results for ARM algorithm. This reflects that, in general, the time 
needed for fault isolation is lower in ARM than in the AM algorithm. The isolation time 
in both algorithms is similar for lower values of bias (+/- 0.25). 
 
The sensitivity analysis for the bias given in Figure 4 shows that the ARM has a higher 
rate of fault detections compared to the AM algorithm, even in cases of small bias (+/- 
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0.25). As expected, both methods show similar performance for high level of bias (+/- 
1). However, this performance decreases when the bias is in the range of - 0.25 to + 
0.25.  

 
Concerning changes in the noise level, the results of AM and ARM given in Table 5 
shows that ARM gives earlier fault detections for all the influent conditions. It can be 
observed in Figure 5 that, as expected, the amount of fault detections increases when the 
noise standard deviation is higher. Any fault detection considering a noise standard 
deviation equal or lower than 0.5 will be within the range of the noise in a fully 
functional sensor, therefore it is difficult to get a high amount of fault detections when 
changes in the standard deviation are around these values. 
 
The effect of the threshold was studied for the two types of faults: bias and noise. In the 
case of bias fault, results in Figure 6 show that changes in the threshold do not affect the 
ARM performance in terms of fault detections. However, the effect of the threshold in 
the false alarms can be seen. ARM is more sensitive to false alarms than the AM 
technique, especially when the thresholds are calculated using the criteria of 2% and the 
bias applied is small (+/- 0.25). Furthermore, the percentage of fault detection decreases 
when the level of bounds change from 2 to 5%. The index IFD and IFI show similar 
results for the two detection methods when the bias is larger than +/- 0.5. For a bias of 
+/- 0.25 the fault detection index given by ARM is higher, it can also be seen that fault 
isolation of ARM in this range is lower compared to higher bias but superior if it is 
compared to AM. 
 
In the case of noise faults, results in Figure 7 show that an increase in the noise standard 
deviation and the threshold does affect the amount of fault detections in ARM, for AM 
the improvement is observed more in the case of threshold of 5% than in 2%. However, 
the amount of fault alarms is not affected by changes in noise and threshold. The 
increments obtained in IFD and IFI give information about the reduced time achieved in 
fault detection and isolation, which is notorious in ARM than in AM. ARM shows a 
best performance in fault detection but with an inherent sensibility to false alarms, in 
this respect AM is less sensitive to false alarms but also less sensitive to fault detection.  
 
Since AM and ARM are methods based on the monitoring of the manipulated variable 
(in this case the KLa value), this indirect way of monitoring makes the delay in the fault 
detection depend on the moment at which the fault signal occurs. For example, in the 
case of ARM, if there is a fault in DOi sensor, the delay in the fault detection will be 
shorter if the correspondent fi,j ratio is close to its maximum values. Similarly, the delay 
will be longer if the correspondent fi,j ratio is close to its minimum values in the fault 
moment. The same analysis applies for the airflow monitoring in the AM algorithm. 
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CONCLUSIONS 

This study evaluates a new fault detection method for dissolved oxygen sensors in 
aerated zones. The method assumes that the DO sensors are used in closed loop control. 
The method can be used for an arbitrary number of zones in series. Three aerated zones 
are used as case study, applying the method to the BSM1. Some conclusions from the 
study are: 
 
 Compared to AM, ARM gives a better performance in fault detection and isolation 

for noise and bias faults. But the threshold definition is more crucial in ARM than 
for AM, in order to have a high rank of successful fault detections and to minimize 
the false alarms. In this respect, a reasonable choice seems to be 5%. 
 

 The performance of AM and ARM is decreased in the case of small bias and small 
change in the noise standard deviation, but even so, ARM gives a better 
performance in terms of false detections. 
 

 The definition of indexes for fault detection and fault isolation allows quantifying 
and comparing the fault detection algorithms, taking into account not only the 
number of detections but the time delays involved.  

 
 In this study we have presented a basic approach using monitoring of air flow rates 

(ARM). The method can be extended in several ways including: 
 

- By using influent water characteristics time varying bounds may be used 
(but this will require more instrumentation and also rely on those new 
sensors (for example influent ammonia sensor). 

 
- In practice, the airflow rate is measured with a sensor. None of the methods 

will be able to distinguish between faults in the DO sensor and the airflow 
rate sensor. An interesting alternative is to use the air valve position instead 
of the airflow rate. 

 
 If there is a significant time delay in the air flows into different zones, this delay 

may be adjusted by calculating the ratio in Equation (3) as: 
 

,     (11) 

 
where τ is an estimate of the time delay between zone i and j. This may improve the 
performance of the detection. Note however that in order to calculate Equation (11) 
a time delay is unavoidable. An interesting topic for further research is to compare 
Equation (3) with (11) for systems with significant hydraulic delays. 

 
In many plants there is a number of parallel lines, each with a number of aerated zones. 
A natural extension of ARM for this case is to also compute the ratios between zones in 
different lines.  
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