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Abstract 

The aim of this work is to apply and evaluate different chemometric approaches employing several machine learning techniques in 

order to characterize the moisture content in biomass from data obtained by Near Infrared (NIR) spectroscopy. The approaches 

include three main parts: a) data pre-processing, b) wavelength selection and c) development of a regression model enabling 

moisture content measurement. Standard Normal Variate (SNV), Multiplicative Scatter Correction and Savitzky-Golay first (SG1) 

and second (SG2) derivatives and its combinations were applied for data pre-processing. Genetic algorithm (GA) and iterative PLS 

(iPLS) were used for wavelength selection. Artificial Neural Network (ANN), Gaussian Process Regression (GPR), Support Vector 

Regression (SVR) and traditional Partial Least Squares (PLS) regression, were employed as machine learning regression methods. 

Results shows that SNV combined with SG1 first derivative performs the best in data pre-processing. The GA is the most effective 

methods for variable selection and GPR achieved a high accuracy in regression modeling while having low demands on 

computation time. Overall, the machine learning techniques demonstrate a great potential to be used in future NIR spectroscopy 

applications. 
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1. Introduction 

Nowadays, society strives to increase the share of renewable and alternative energy sources with motivation to 

reduce dependence on fossil fuels and to reduce the emissions of carbon dioxide. Biomass is considered as the only 

carbon-based sustainable solution to replace fossil-based fuels. However, biomass is characterized by strong physical 

and chemical diversity, which makes it energy utilization challenging. Since the energy biomass conversion processes 

are sensitive to high variability in feedstock material properties (such as moisture content) and requires continuous 

regulation, it is needed a non-destructive method able to measure biomass in real-time [1]. 

As demonstrated in previous studies, real-time measurements can be achieved by employing near infrared (NIR) 

spectroscopy. This technique is based on interactions between emitted electromagnetic radiation (EMR) and the 

analyzed material. Such interactions lead to vibrational transitions in structural molecular groups e.g. O-H, C-H, N-H, 

S-H, C=O, C=H and C=C, producing measurable/detectable response in the spectra which is, according to Beer–

Lambert law, linearly proportional to the concentration of the absorbing molecule. The extraction of the information 

from the spectra is done by a chemometric approach including mathematical and statistical methods to provide 

maximum chemical information [1]. The chemometric approach usually consists of spectral pre-processing, 

wavelength selection an employment of regression or discrimination method. The state-of-practice in the field is the 

use of multivariate liner techniques, e.g. Partial Least Squares (PLS) regression. However, the recent literature review 

has identified emerging opportunity for application of other mostly non-linear machine learning methods [2]. 

In the literature different pre-processing, wavelength selection and multivariate calibration methods are proposed. 

The combination or exclusion of the methods depends on the material as well as its physical and chemical properties. 

For example, marginal difference have been observed comparing raw and pre-processed NIR dataset used for 

determination of moisture content in marzipan [3], whereas [4-6] have argued that major improvements could be done 

by applying pre-processing methods. Comparison of different wavelength selection methods can be found in [7]. 

Wavelength selection may be applied, because only a fraction of the NIRS data from the waves of the NIR spectrum 

is affected upon moisture variation in the material [3]. By performing wavelength selection, a lot of data may be 

neglected, therefore computations will become faster and prediction results may improve [4]. Regression models are 

created with multivariate calibration methods that are trained using supervised learning. Different methods vary in 

speed, accuracy, complexity and application [8]. PLS is the most common used method [4-6, 9-11], however non-

linear method such as GPR is present in some of the recent studies.  

The objective of the present work is to evaluate various chemometric approaches using machine-learning methods 

for biomass moisture determination by NIR spectroscopy. The study includes acquisition of NIR spectral data and 

reference biomass moisture determination according to standardized laboratory method. Most importantly, the 

complex chemometric approaches consisting of individual methods for data pre-processing, wavelength selection and 

machine-learning regression are employed and compared according to proposed evaluation methodology. The results 

are presented in the form of Coefficient of determination (R2), Root Mean Squared Error computed from the selected 

cross validation round (RMSECV) and standard deviation (s) [12]. 

2. Materials and Methods  

2.1. Dataset 

Dataset was obtained by experimental measurements on solid biomass samples (random blends of pine and spruce 

wood chips, bark, forest residues and sawdust, particle size approx. 5-50 mm) collected from biomass processing 

facilities in Västmanland region, Sweden. Spectral data were acquired using a FT-NIR spectrometer MATRIX-F 

equipped with contactless illumination/detection head Q410A (both Bruker Optics, Germany) with 4 halogen sources 

[13]. Near infrared spectra was collected in diffuse reflection mode on samples moving on a turntable at 1 m·s-1 and 

recorded as relative absorbance [2]. Acquisition parameters are summarized in Table 1. 
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Table 1. Acquisition parameters of NIR spectra 

Parameter Value 

Focal distance of illumination/detection head 170 mm 
Scanning spot size approx. ø10 mm 

Recorded spectral range 12000 – 4000 cm-1 (834-2500 nm) 

Number of averaged scans 32 

Spectral resolution 16 cm-1 

Scanner velocity 10 kHz 

Ambient temperature 20±1 °C 

Number of data points in each spectra 1037 

Number of tested samples 809 

 

The determination of reference value (i.e. fuel moisture content) was carried out according to standardized 

laboratory procedure EN ISO 18134-2:2015 [14]. The method is based on thermo-gravimetric measurements where 

samples are thermally treated at 105° C. 

2.2. Chemometric approach 

The process of moisture contents prediction in biomass consisted of three phases: pre-processing of the NIR data, 

wavelength selection and development of a regression model. The process is shown in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Chemometric approach used in our study. 
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and second derivative (SG1 and SG2, respectively). Each of these pre-processing methods was evaluated employing 

Partial Least Square regression (PLS), Gaussian process regression (GPR), Artificial Neural Network (ANN) and 

Support Vector Regression (SVR). The PLS was tested while including 17-20 principle components; the GPR was 

tested with an exponential-kernel function; the ANN was tested with Bayesian Regulated back propagation with one 

hidden layer and 9 nodes; and the SVR was tested with a Gaussian-kernel function. In this work, all programs were 

written in the proprietary programming language MATLAB1. 

Genetic algorithm (GA) [7] in combination with reverse interval-PLS (iPLS) [15] is used for wavelength selection. 

The GA was used to select minimum wavelengths, i.e. wavelengths that contain relevant information are frequently 

selected alongside maximizing the prediction accuracy. The iPLS divides the spectrum of 1037 wavelengths into 21 

arbitrary intervals of equal size with 49 wavelengths per interval. The algorithm removes one interval at each iteration 

and evaluates in term of improvement of RMSECV and R2. This was performed 150 times for full-iPLS and 2000 for 

21 divided-iPLS to create a sorted vector of the most used intervals. The best intervals are decided by “Wavelength 

selection” and then tested using GA to specify specific wavelengths. The last few wavelengths which did not fit into 

an interval are sent through and evaluated by the GA when it evaluates the intervals afterwards. When the intervals 

are known, the GA will select the individual wavelengths from these intervals that give the best accuracy. All the 

wavelength selection methods have been tested 100 times to find the most frequently selected wavelengths. Each 

generation of GA was set to consist of 30 individuals, where an individual is represented by a bit-vector. The 

population was randomly initialized for the first generation and the other generations had a high grade of elitism such 

that 70% of the next generation consisted of the best individuals from the previous generation. The remaining 30% 

were the offspring’s from parents selected accordingly to a Roulette Wheel Selection scheme [16] and the crossover 

was done with the Uniform method. When the maximum number of generations has been reached, a new test will 

begin. This will be repeated 100 times where the algorithm will keep track of how often the individual wavelengths 

were used in all the tests together. 

Finally, when the optimal wavelength intervals are identified, the best regression methods based on the prediction 

performance with pre-processing methods are separately used so that result could be further improved with respective 

selected wavelengths or at least to keep the same accuracy but with less wavelengths. 

2.3. Evaluation method 

Root Mean Square Error (RMSE) and coefficient of determination (R2) were used to evaluate the performance of 

the regression method in term of prediction accuracy, defined as 

𝑅𝑀𝑆𝐸 =  √
∑(�̂�−𝑒)2

𝑚
    (1) 

𝑅2 = 1 −
∑ (𝑒𝑖−�̂�𝑖)2𝑚

1

∑ (𝑒𝑖−�̅�𝑖)2𝑚
1

                 (2) 

 

RMSE is a popular method for measuring prediction by taking the root of the squared average difference between 

the predicted value �̂� generated by a model and the actual value 𝑒 across 𝑚 samples, the amount of difference between 

�̂� and 𝑒 is proportional to the result. This follows that larger errors affect the RMSE exponentially compared to small 

errors. Models that regularly predict close to the targeted value score a lower RMSE compared to models that make 

perfect prediction. The variation of the response variable can be measured by R2. In addition, to avoid model 

overfitting, the holdout method was applied [17], which partitioned samples into training and test dataset, where 

 

 
1 MATLAB Version: 9.3.0.713579 (R2017b). 
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training dataset consisted of 70% and testing dataset consisted of 30% of entire dataset. The training set was used to 

fit a model, where the performance was evaluated based on the prediction of the fitted model on the test dataset. 

Moreover, the training was validated with 6-fold cross-validation. Hence, RMSECV was estimated for each regression 

model with training dataset and another evaluation criterion was computation time of training a model along with data 

pre-processing and wavelength selection. 

3. Results and Discussion 

Complex evaluation have been performed in order to examine the combination of pre-processing, wavelength 

selection and regression methods. Table 2 shows the performance of PLS and GPR using pre-processing methods on 

training dataset, where all wavelengths variables of NIR were used for predicting moisture content. The SNV and 

MSC provided very similar results over raw data with an improvement of 6-33% for SNV and 1-33% for MSC 

depending of the regression method. MSC required considerable more time to prepare the provided data compared to 

SNV. Similar results were also observed when SNV and MSC were used in combination with the SG1. SNV combined 

with SG1 was the pre-processing method with the best performance improvement considering also the computation 

time. GPR even performed better when MATLAB’s built-in standardization method† was used. 

Table 2. Result of the pre-process evaluation in terms of RMSECV and execution time on training dataset. Note that the computing times are on 

the whole data set, i.e. they are just a comparison and do not show the actual time taken in real-time use. Standard deviation (𝑠) is estimated over 

6-fold cross-validation of 100 iterations.   

Dataset Execution 
time  

(ms , 𝑠) 

PLS GPR ANN SVR 

(RMSECV, 𝑠) 

 

(𝑅2, 𝑠) (RMSECV, 𝑠) 

 

(𝑅2, 𝑠) (RMSECV, 𝑠) 

 

(𝑅2, 𝑠) (RMSECV, 𝑠) 

 

(𝑅2, 𝑠) 

Raw data NaN, NaN 2.73, 0.12 0.97, 0.003 3.0, 𝑠 = 0.18 0.95, 0.003 2.31, 0.10 0.93, 0.003 2.47, 0.15 0.94, 0.003 

SNV 24.5, 0.14 2.41, 0.09 0.98, 0.002 2.0, 𝑠 = 0.14 0.98, 0.002 2.16, 0.10 0.98, 0.002 2.14, 0.12 0.97, 0.002 

MSC 796.1, 43.7 2.46, 0.09 0.98, 0.002 2.01, 0.14 0.97, 0.002 2.32, 0.18 0.98, 0.002 2.15, 0.07 0.97, 0.002 

SG1 60.1, 6.0 2.75, 0.11 0.97, 0.003 2.23, 0.13 0.97, 0.002 2.42, 0.15 0.98, 0.002 2.17, 0.12 0.97, 0.002 

SG2 59.2, 2.6 2.88, 0.12 0.97, 0.003 2.19, 0.09 0.96, 0.002 2.67, 0.11 0.97, 0.002 2.24, 0.27 0.96, 0.003 

SNV+SG1 85.1, 7.4 2.31, 0.09 0.98, 0.002 2.03, 0.09 0.98, 0.002 2.26, 0.08 0.98, 0.002 2.04, 0.09 0.98, 0.002 

MSC+SG2 841.5, 17.2 2.36, 0.08 0.98, 0.002 2.04, 0.09 0.98, 0.002 2.34, 0.10 0.98, 0.002 2.03, 0.08 0.98, 0.002 

SNV+MSC+SG1 869.2, 42.8 2.35, 0.08 0.98, 0.002 2.03, 0.09 0.98, 0.002 2.28, 0.11 0.98, 0.002 2.04, 0.06 0.98, 0.002 

 

Each method was evaluated with test dataset and their best respective pre-processing method, according to Table 

2. The best pre-processing method was evaluated considering both accuracy and speed. Table 3 represents the 

evaluation of the regression models on test dataset. It clearly shows that the GPR has the lowest RMSECV. Note that 

the computation time covers the whole test set and it includes pre-processing, followed by regression through the set.  

Table 3. Evaluation of regression methods with optimal setups on the full spectrum. Comparison between the two methods in term of execution 

time, RSME and  𝑅2. Average execution time, RSME and 𝑅2 are presented; both the mean value and standard deviation (𝑠) are estimated over 

100 iterations. 

Dataset Execution time (ms, s) RMSECV, s 𝑅2, s 

SNV+SG1+PLS 20.89, 0.73 2.31, 0.09 0.98, 0.002 

SNV+SG1+ GPR 33.62, 1.47 1.69, 0.10 0.98, 0.001 

 

 
† https://se.mathworks.com/help/stats/fitrgp.html 
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SNV + ANN  19.60, 1.25 2.01, 0.12 0.98, 0.002 

SNV + SG1 + SVR 36.27, 2.53 1.96, 0.14 0.98, 0.002 

 

The similarities between SNV and MSC are very understandable as both methods are used for the same purpose, 

light scatter correction and adjusting spectral baseline [18]. SG1 and SG2 are methods for eliminating outliers in 

spectral baseline variation between samples while enhancing small differences [19]. This could explain why SG1 and 

SG2 performed poorly when used on their own. Background noise in the acquired spectra could possibly have been 

enhanced by SG1 and SG2. This also explains the improvement when SG1 and SG2 were combined with SNV and 

MSC, as these methods reduce background noise. 

In the optimal wavelength selection process, data pre-processing was included with regression method if the 

wavelength selection is run with pre-processed data, otherwise wavelet selection was done on raw dataset. The biggest 

difference is observed in the wavelengths over 2000 nm in almost all the different methods. Other than that, most 

wavelength intervals are the same, with some small offsets. Tables 4 shows the RMSECV, QTY (the number of 

wavelengths used) and the distribution of wavelengths in the spectrum, with a percentage (%) of QTY, for each 

wavelength selection method. All the suggested wavelengths have been evaluated with PLS and GPR. The GA 

performed better on the full NIR-spectrum with the best suited pre-processing since it only uses input of 71 wavelength 

data points and still achieves a prediction accuracy of 1.64% RMSECV. Reduction of input wavelength data points 

positively contribute to model robustness. Fig 2 shows the corresponding results for the GPR model with best accuracy 

on test dataset using raw dataset and pre-processed dataset.   

Table 4. Moisture contents prediction using PLS and GPR with wavelet selection. QTY refers to number of wavelengths 

used. 

Goal Raw dataset Pre-processed dataset 

Wavelength used Average 
RMSECV 

𝑅2 QTY Wavelength used Average 
RMSECV 

𝑅2 QTY 

nm % nm % 

Least number of 

wavelengths to keep the 
same accuracy as using 

all wavelengths in the 

segment 

844914 

968993 

11431202 

13531411 

1476 

16491653 

1884 

1952 

19 

25 

22 

16 

3 

9 

3 

3 

PLS: 2.75, 

𝑠 = 0.11 
GPR: 2.95, 

𝑠 = 0.23 

PLS: 0.96, 

𝑠 = 0.002 
GPR: 0.96, 

𝑠 = 0.002 

32 10731075 

11431202 

13461447 

1538 

16201631 

17531803 

18652016 

2087 

21752361 

25 

4 

21 

1 

8 

8 

16 

1 

16 

PLS: 3.06% 

𝑠 = 0.08 
GPR: 1.64% 

𝑠 = 0.12 

PLS: 0.98 

𝑠 = 0.002 
GPR: 0.98 

𝑠 = 0.002 

71 

Best accuracy 8341204 

12721301 

13521497 

15901594 

16451653 

17191773 

18512084 

21362179 

22542270 

2353 

44 

3 

20 

2 

3 

3 

20 

2 

2 

1 

PLS: 2.45, 

𝑠 = 0.07 
GPR: 2.81, 

𝑠 = 0.21 

PLS: 0.96, 

𝑠 = 0.003 
GPR: 0.96, 

𝑠 = 0.002 

147 8341656 

17062427 

62 
38 

PLS: 2.13% 

𝑠 = 0.07 
GPR: 1.68% 

𝑠 = 0.09 

PLS: 0.98 

𝑠 = 0.002 
GPR: 0.98 

𝑠 = 0.002 

355 
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Fig. 2. Resulting Parity plots on test data using GPR. a) Parity plot shows the best prediction with wavelengths from raw dataset; b) Parity plot 

shows the best prediction with selected wavelengths from pre-processed dataset 

Depending on the method applied, different wavelengths were selected. Some regions were more frequently 

selected by all the methods. It has been observed that the most frequently selected wavelengths correlates, in most of 

the cases, with the optical absorption features of water molecules. Absorption features arises from vibrational 

transitions – fundamental vibrations and overtones and combinations: ν1 (H-O-H symmetric stretching transition), ν2 

(H-O-H bending mode transition) and ν3 (H-O-H asymmetric stretching transition). The absorption feature at approx. 

950 nm is assigned to 2ν1+ ν3, at approx.1280 nm to a ν1+ ν2+ ν3, at approx. 1400 nm to a ν1+ ν3 and the one at 1900 

nm to ν2+ ν3 combination of vibrational transitions [20]. However, some of the selected wavelengths do not fall into 

the known absorption bands for water molecules. One reason for this could be that water molecules interacts with 

other substances in the material [7]. Some of the tests also used pre-processing, which have manipulated the data. This 

might also affect the wavelengths selected in a test set. The evaluation of the pre-processing methods shows that the 

faster pre-processing methods also provided a best accuracy, which is highly advantageous, as a low computation time 

is desired for the application in real-time. The results shows that the GPR achieves significantly greater accuracy 

compare to traditional PLS while having similar demands on computation time. 

4. Conclusion 

This paper presents evaluation of different chemometric approaches combining pre-processing, wavelength 

selection and machine-learning regression methods for biomass moisture characterization by near infrared (NIR) 

spectroscopy. According to the results presented, the following conclusions can be drawn: 

 Application of pre-processing techniques to the NIR spectral data improved the results greatly in all of the 

cases compared to raw data. Hence, Multiplicative scatter correction (MSC) required considerably more time 

than other techniques. For given application, Standard Normal Variate (SNV) combined with Savitzky-Golay 

first derivative (SG1) is the method with the best potential to improve model performance considering also the 

computation time.  

 From evaluated methods, the Genetic Algorithm (GA) is the best performing wavelength selection method. It 

leads to significant reduction of input wavelength data points positively affecting model robustness while 

having no negative impact on model accuracy. 

 Gaussian process regression (GPR) is considered the best performing machine-learning method for given 

dataset. The method achieved high accuracy while having relatively low demands on computation time 

a) b) 
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compared to other methods. 

 Overall, the machine learning methods used in this work demonstrate great potential to substitute traditional 

methods as PLS regression and to become an important part of chemometric approaches in future NIR 

spectroscopy applications.  
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