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Abstract — The analysis of a simplified activated sludge
process (ASP) with one main dissolved substrate and one
main particulate biomass component has been conducted with
respect to its steady-state. The ASP is formed by a plug-
flow reactor (PFR) and a settler with the recycling going
to the reactor. The biomass growth rate is described by a
Monod function. For this process, it is not possible to get
an explicit expression for the effluent substrate concentration
when the process is subject to a fixed sludge age. However,
in the normal case when the influent substrate concentration
is much greater than the effluent substrate concentration,
then an explicit approximation for the effluent as a function
of the influent and the process parameters is obtained. This
work includes numerical examples considering two models
for the settler. One model is the ideal settler, which assumes
a complete thickening of the activated sludge through the
underflow of the settler. The other model takes into account
hindered settling and sludge compression. Numerical results
show the effectiveness and the limitations of the proposed
solution under these scenarios.
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I. INTRODUCTION

Steady-state modeling and analysis of ASPs have been
extensively studied during the last 50 years. One impor-
tant reason is that the steady-state analysis of a dynamic
model can provide initial values for process operation and
optimization.

Generally, the mixing regime in an ASP reactor neither
behaves as a completely stirred tank reactor (CSTR) nor as
a plug-flow reactor (PFR), but in some sense in between
[1]. In a CSTR, the reactor content is well stirred, so it is
assumed that the concentration in the effluent is the same
as in the reactor. In a PFR, the key assumption is that
the fluid is perfectly mixed in the radial direction and in
the axial direction only the transportation of the fluid is
considered. Therefore, a PFR can be seen as a series of
infinitely thin CSTRs, each with a uniform and different
composition than the neighbouring one [2]. It is expected
that a PFR with a volume smaller than several CSTRs in
series will give the same performance [3].

Compared to the classical ASP configuration, i.e. ASP
with one CSTR, an explicit (steady-state) solution for
an ASP formed by a PFR seems to not be possible to
obtain [4]. However, some attempts have been made in
the analysis of this process. For example, some implicit
and approximate expressions for the effluent substrate were
presented in [5], where the expressions were compared
with numerical solutions. Computer techniques to solve the

problem of a PFR in an ASP when considering the PFR
as a large number of bioreactors in series are shown in
[6]. Design graphs and numerical examples were presented
as guidelines to size the process. On the other hand, a
study of an ASP formed by a PFR could be seen as an
approximation of an ASP with several CSTRs in series
[7], [8].

A study of the relationship between the influent and
effluent of an ASP formed by one and two CSTRs in
series was presented in [8]. The study mentions that it does
not seem possible to find explicit solutions for the effluent
substrate concentration for two or more bioreactors. That
work was the motivation that led to the development of [4]
and the current study.

A steady-state analysis of an ASP formed by using a
PFR and a settler was recently studied in [4]. The study
considers and compares two different settler models. One is
the ideal settler, which assumes an unlimited flux capacity,
i.e. the settler is always considered to be overdimensioned.
The other model, recently published in [9], here referred
to as DZC settler model, includes hindered and compres-
sive settling, which means that a limited flux capacity is
modelled. Both numerical and, in some cases, analytical
results are obtained. A comparison with an ASP formed
by a single CSTR is also shown in [4].

In the present work, we continue the analysis of an
ASP consisting of a PFR and a settler. For the ideal
settler case, the steady-state solution is presented with
explicit approximate formulas when the influent substrate
concentration is much greater than the effluent substrate
concentration. Under the same assumption, we also present
an explicit formula for the effluent substrate concentration
as a function of the influent substrate concentration when
the sludge age is fixed. This formula can be used for both
settler models.

The paper is organized as follows. A description of the
ASP with a PFR and a settler is presented in Section II,
including the steady-state mass balances and the definitions
for the ideal and DZC settler models. In Sections III
and IV, we review from [4] the equations describing the
steady-state conditions of the ASP for both settler models.
Section V contains an approximate explicit expression for
the effluent substrate concentration. Numerical examples
are shown in Section VI and conclusions are drawn in
Section VII.
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Nomenclature
A vertical cross-sectional of PFR [m2]

AS horizontal cross-sectional of settler [m2]

B depth of thickening zone [m]

H height of clarification zone [m]

Ks half-saturation constant [kg/m3]

Q influent volumetric flow rate [m3/s]
S dissolved substrate concentration [kg/m3]

Uzsb function defined in (12) [kg/m3]

VR volume of PFR [m3]

X particulate biomass concentration [kg/m3]

X∞
zsb

parameter in (12) [kg/m3]

Y yield constant [−]
h length of PFR [m]

q bulk velocity in the thickening zone [m/s]
q̂zsb parameter in (12) [m/s]
q̌zsb parameter in (12) [m/s]
r recycle ratio [−]
w wastage ratio [−]
x horizontal distance from feed in PFR [m]

z depth from feed level in settler [m]

Greek letters
µ Monod function [1/s]
µmax maximum specific growth rate [1/s]
θ sludge age [s]
Subscripts
�0 defined constant value
�e effluent
�in influent
�r recycle
�sb sludge blanket
Superscripts
�∗ PFR steady-state concentration
� PFR influent concentration

Sin Sin

Xin

S∗

S∗

S∗

Q

rQ wQ

(1 + r)Q

(1− w)Q

(r + w)Q

X∗

Xe

Xr

plug-flow bioreactor
settler

xh0

Fig. 1: The activated sludge process consisting of a PFR and
a settler. The steady-state variables are shown as well as the
horizontal x-axis of the PFR.

II. THE ACTIVATED SLUDGE PROCESS

For the ASP we consider using a PFR coupled with
a settler, see Figure 1, where the recycling flows to the
reactor. The PFR has a constant vertical cross-sectional area
A and length h, so the volume is VR = Ah. The variable x
is used to denote the horizontal axis in the PFR from the
inlet (x= 0) to the outlet (x= h). Where the concentrations
at location x can be denoted as S(x) and X(x) in the PFR.

We assume two constituents, namely one particulate
biomass X and one dissolved substrate S. The influent

volumetric flow rate and substrate concentration are de-
noted by Q and Sin, respectively. It is assumed that no
biomass is present in the influent (Xin = 0). The PFR input
concentrations are denoted by Sin and Xin, and the PFR
outputs by S∗ and X∗. It is assumed that no reactions
are taking place in the settler, so that only particulate
biomass is influenced. The substrate concentration is thus
unchanged and therefore equal to S∗ throughout the settler.
The effluent at the top of the settler is Xe and the recycle
concentration is Xr. The recycle flow rate is rQ and the
waste flow rate is wQ, where r > 0 and 0 < w ≤ 1. The
kinetics in the PFR are described by using the Monod
function [10]

µ(S) = µmax
S

Ks +S
, (1)

where µmax is the maximum specific growth rate and Ks is
the half-saturation constant. It is assumed that the biomass
death is negligible.

The sludge age θ of the process is defined as the amount
of biomass in the bioreactor divided by the removed
biomass per unit time, and is expressed as

θ =
A
∫ h

0 X(x)dx
wQXr

. (2)

A. Mass balances and expression for the sludge age

The three mass balances of the process in steady state
with Xe = 0 are

Q(1+ r)Sin = QSin + rQS∗, (3)

Q(1+ r)Xin = rQXr, (4)
Q(1+ r)X∗ = (r+w)QXr. (5)

Applying the conservation of mass in the PFR we get

Q(1+ r)
A

dS
dx

=−µ[S(x)]
X(x)

Y
, (6)

Q(1+ r)
A

dX
dx

= µ[S(x)]X(x), (7)

where Y refers to the yield constant. The following bound-
ary conditions hold: X(0) = Xin, S(0) = Sin, X(h) = X∗ and
S(h) = S∗. By combining Equations (6) and (7) together
with the boundary conditions, gives

Q(1+ r)
A

d(Y S+X)

dx
= 0

=⇒ Y Sin +Xin = Y S(x)+X(x) = Y S∗+X∗. (8)

By solving for X(x) in Equation (8) and substituting
it into (6), using VR = Ah and integrating, we get the
following equation for the PFR:

−Q(1+ r)Y
∫ S∗

Sin

dσ

µ(σ)
[
Xin +Y (Sin−σ)

] =VR

⇐⇒ f (S∗,r,w) =VR, (9)
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Fig. 2: The DZC settler. The steady-state variables are shown as
well as the vertical z-axis of the settler.

where

f (S∗,r,w) =
Q(1+ r)

µmax

[
P ln

(
a(Sin + rS∗)

S∗(1+ r)

)
+ ln(a)

]
,

(10)

P = P(S∗,r,w) =
Ksw(1+ r)

Sin(r+w)−S∗r(1−w)
,

a = a(r,w) =
r+w

r
.

We can obtain the sludge age by rewriting the integral
in Equation (2) using Equation (6). Then we have (see [4])

θ =
A

wQXr

[−Q(1+ r)Y
A

∫ S∗

Sin

(Ks +σ)dσ

µmaxσ

]
=

1
µmax

[
1+

(1+ r)Ks

(Sin−S∗)
ln
(

Sin + rS∗

S∗(1+ r)

)]
. (11)

B. The settler
Ideal settler model. For an ideal settler we assume that

all the sludge fed to the settler will always pass through
the thickening zone, regardless of the amount of incoming
sludge and the recycle and waste flows. Although in many
cases unrealistic, this model could work well when the
settler is over-sized.

DZC settler model. The processes in the settler are
described by a steady-state approximation of a partial
differential equation (PDE) which includes a hindered
settling velocity function and a compression function [11].
The behavior of a real settler can be divided into three
qualitatively different operations: underloaded, overloaded
and normal operation. By normal operation we mean that
all the biomass fed to the settler is conveyed through the
thickening zone and that there exists a sludge blanket in
the thickening zone, see Figure 2. In this work we only
study the steady-state solutions under normal operation and
therefore set Xe = 0.

The following simple relationship is a reasonable ap-
proximation obtained from the steady-state solutions that
have a sludge blanket in the thickening zone [9]

Xr =Uzsb(q) := X∞
zsb

(
1+

q̂zsb

q+ q̌zsb

)
, (12)

where q is the bulk velocity in the thickening zone, defined
as

q = q(r,w,Q,AS) :=
Q(r+w)

AS
, (13)

where X∞
zsb
, q̂zsb and q̌zsb are parameters which depend on

the chosen sludge blanket level zsb. AS is the settler constant
horizontal cross-sectional area, see model details in [9].

III. ASP WITH IDEAL SETTLER MODEL

A. Steady-state solutions

From the mass balances of the process (5), (8) and (9),
the steady-state equations for an ASP with ideal settler can
be expressed as (ignoring the variables Sin and Xin; these
can be obtained from (3) and (4))

S∗ = Sin−
w
Y

Xr, (14)

X∗ =
r+w
1+ r

Xr, (15)

VR = f (S∗,r,w), (16)

where f (S∗,r,w) is given in Equation (10). To get the
solution of these equations, Equation (16) is solved for
S∗ = S∗(r,w), then Equation (14) gives Xr = Xr(r,w) and
Equation (15) gives X∗ = X∗(r,w). Note that all these vari-
ables are two-parameter solutions of the control variables
r,w. Note also from Equations (9) and (10) that S∗ is
expressed implicitly. If Sin� S∗ is assumed, we have the
following results.

Theorem 1. Given an ASP with an ideal settler described
by Equations (14)–(16). If Sin� S∗ then the solution of
Equations (14)–(16) can be expressed explicitly as

S∗ = S∗(r,w) =
(r+w)Sin

r [(1+ r)exp(β)− (r+w)]
, (17)

Xr = Xr(r,w) =
Y
w
(Sin−S∗(r,w)) , (18)

X∗ = X∗(r,w) =
(r+w)Y
(1+ r)w

(Sin−S∗(r,w)) . (19)

where

β =
Sin(r+w)
Ksw(1+ r)

[
VRµmax

Q(1+ r)
− ln

(
r+w

r

)]
,

and when the denominator in Equation (17) is positive.

Proof. The assumption implies that Equation (16) can be
expressed as (cf. Equations (9) and (10))

Q(1+ r)
µmax

[
1
G

ln
(

a(Sin + rS∗)
S∗(1+ r)

)
+ ln(a)

]
=VR, (20)

where

G =
Sin(r+w)
Ksw(1+ r)

and a =
r+w

r
,

solving (20) for S∗ gives

G
(

VRµmax

Q(1+ r)
− ln(a)

)
= ln

(
a(Sin + rS∗)

S∗(1+ r)

)
,
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for simplicity we set β = G
(

VRµmax
Q(1+r) − ln(a)

)
, then we have

exp(β) =
a(Sin + rS∗)

S∗(1+ r)
⇐⇒

S∗(1+ r)exp(β) = a(Sin + rS∗)⇐⇒

S∗ =
aSin

(1+ r)exp(β)−ar
⇐⇒

S∗ =
(r+w)Sin

r [(1+ r)exp(β)− (r+w)]
,

if the denominator is positive.
Once S∗ is obtained, Xr and X∗ are given from Equations

(14) and (15), respectively.

B. Substrate input-output relationship for constant sludge
age

The two-parameter solution of Equations (14)–(16) (or
(17)–(19) in Theorem 1) means that two additional equa-
tions can be imposed to define the operation conditions. We
are interested in investigating the steady-state solutions of
the process for different values of Sin for a constant sludge
age θ0. For Sin as a variable, we have six variables to take
into consideration: S∗,X∗,Xr,r,w, and Sin. However, to get
a one-parameter solution with Sin as a parameter, we can
add the following to Equations (14)–(16):

r = r0, (21)
1

µmax

[
1+

(1+ r)Ks

(Sin−S∗)
ln
(

Sin + rS∗

S∗(1+ r)

)]
= θ0, (22)

Since r = r0 is constant, Equation (22) defines implic-
itly S∗ = S∗(Sin), then Equation (16) gives w = w(Sin),
Equation (14) gives Xr = Xr(Sin) and Equation (15) gives
X∗ = X∗(Sin).

IV. ASP WITH DZC SETTLER MODEL

A. Steady-state solutions

The mass balances of the system considering the DZC
settler model have to include Equation (12) in order to get
a sludge blanket in the thickening zone. The steady-state
equations are then expressed as

S∗ = Sin−
w
Y

Uzsb(q), (23)

X∗ =
r+w
1+ r

Uzsb(q), (24)

Xr =Uzsb(q), (25)
VR = f (S∗,r,w). (26)

Straightforward calculations give that the expression for
the sludge age is the same as for the ideal settler model
(cf. Equation (11) and [4])).

B. Substrate input-output relation for constant sludge age

As in the case of an ASP with ideal settler, we are inter-
ested in the solution of the process for a constant sludge age
for different values of Sin. By imposing θ(r,Sin,S∗) = θ0 we
get a one-parameter solution. Note that we cannot impose
another equation (e.g. r = r0) as we did for the ideal settler
model, since we have Equation (12) controlling the sludge
blanket.

Hence, Equations (22), (23) and (26) are solved for
S∗ = S∗(Sin), r = r(Sin) and w = w(Sin). Then, Equa-
tion (24) gives X∗ = X∗(Sin) and Equation (25) gives
Xr = Xr(Sin).

V. AN APPROXIMATION FOR S∗ GIVEN θ0

Note that S∗ is given implicitly in Equation (22), and
will depend on Sin, r and θ0. This equation can, however,
be solved explicitly for S∗ if we make an assumption.

Theorem 2. Given an ASP described by Equations (14)–
(16) (for an ideal settler) or by (23)–(26) (for a DZC
settler), and where θ is given by (11). Assume that θ is
fixed to θ0, i.e. Equation (22) is imposed. If Sin� S∗, then
the following simple expression for S∗ holds:

S∗ =
Sin

(1+ r)exp(αSin)− r
, (27)

where

α =
θ0µmax−1
Ks(1+ r)

.

Proof. Assuming Sin� S∗, Equation (22) can be written
as

1
µmax

[
1+

(1+ r)Ks

Sin
ln
(

Sin + rS∗

S∗(1+ r)

)]
= θ0,

solving for S∗ gives

S∗ =
Sin

(1+ r)exp(αSin)− r
,

where α = (θ0µmax−1)/(Ks(1+ r)).

VI. NUMERICAL EXAMPLE

We assume that the ASP has the following constants
and parameters: VR = 3000 m3, Q = 1000 m3/h,
µmax = 0.17 h−1, Ks = 0.05 kg/m3, Y = 0.7. For
the DZC settler model we let: B = 3 m, zsb = 1 m,
X∞

1 = 6.52 kg/m3, q̂1 = 0.32 m/h, q̌1 = 0.45 m/h. The
latter constants were obtained with standard parameters
for the hindered settling and compression functions and
the procedure in [9].

Numerical solutions of the model equations will now
be compared with the approximate solutions given by
Theorems 1 and 2. The numerical solutions are obtained
with fsolve, a function in Matlab which solves systems
of non-linear equations.
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Fig. 3: PFR with ideal settler model. Comparison between the numerical (no approximation) and the approximated solutions given by
Theorem 1 as functions of r. The results are shown for two values of the wastage: w = 0.02 (in blue), w = 0.025 (in red), w = 0.03
(in green). The influent substrate concentration is fixed to Sin = 0.1 kg/m3.

A. Theorem 1

This case deals with an ASP with an ideal settler model.
Figure 3 shows the numerical (without approximation,
i.e. without the assumption Sin� S∗) and approximated
solutions given by Theorem 1 for S∗,X∗ and Xr. That
is, we compare the results from Equations (14)–(16) with
results from Equations (17)–(19). The influent substrate
concentration is set to Sin = 0.1 kg/m3. The results are
shown for an interval of values of r and for some values
of the wastage ratio w.

Note that in plot (a), for higher values of S∗, the
difference between the values given by Theorem 1 and the
values from the solution with no approximation becomes
larger. The same effect can be seen in plot (b) for X∗ and
in plot (c) for Xr. S∗ starts to decrease for higher values
in r. Then, the difference between values with and without
approximation starts to decrease.

B. Theorem 2

For the ideal settler model, Figure 4 shows numerical and
approximated solutions given by Theorem 2. Equation (22)
is solved for S∗ = S∗(Sin) at an interval of values for Sin.
The recirculation is set to r = r0 = 1 (cf. Equation (21)),
and we set θ0 = 16 h. Note that, for higher values of Sin,
the values for S∗ given by Theorem 2 are closer to those
given by the solution of the process with no approximation.

For the DZC settler model, Equations (22), (23) and (26)
are solved for S∗ = S∗(Sin),r = r(Sin) and w = w(Sin) at an
interval of values for Sin. Figure 5 shows the numerical and
approximated solutions for S∗ = S∗(Sin). We set θ0 = 6.5 h
and show some results for some values of the settler area
AS.

Note that, for a given Sin and when a higher AS is used,
the solution with no approximation gives a higher recycle
concentration Xr (see Equations (12) and (13)). This means
that we have a more thickened sludge, which gives a lower
S∗ (see Equation (23)). Therefore, S∗ becomes much lower
compared to Sin as AS increases. Hence, the values from
Theorem 2 are much closer to the solution of the model
equations without approximation.

0.1 0.2 0.3 0.4 0.5
Sin [kg/m3]

0

0.005

0.01

0.015

0.02

0.025

S
*  [k

g/
m

3 ]

No approximation
Results from Theorem 2

Fig. 4: PFR with ideal settler model. Comparison between the
numerical and the approximated solutions given by Theorem 2
as functions of Sin. The recirculation is fixed to r0 = 1 and the
sludge age is kept to θ0 = 16 h.
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m

3 ]

Solid lines: No approximation 
Dashed lines: Results from Theorem 2

Fig. 5: PFR with DZC settler model. Comparison between the
numerical (no approximation) and the approximated solutions
given by Theorem 2 as functions of Sin for some values of the
settler area AS [m2]: 500 m2 (in blue), 1500 m2 (in red), 3000 m2

(in green). For every curve, the sludge age is kept to θ0 = 6.5 h.

VII. CONCLUSIONS

An ASP formed by a PFR and a settler has been studied
in steady-state operation. It is shown that explicit, but
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approximate, solutions can be obtained for the case of
an ideal settler under the assumption that the influent
substrate concentration is much greater than the effluent
one. With this assumption it is also possible to obtain
an explicit expression for the effluent concentration as a
function of the influent one under the operating condition
that the sludge age should be maintained at a specific
value. Numerical examples show the performances of the
simpler explicit expressions under two different models for
the settler and hence when the simpler formulas can be
used. Further research might be focused on considering the
decayed particulate biomass as an additional constituent in
the process.
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