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Abstract — This paper presents a method for monitoring
the sludge profiles of a secondary settler using a Gaussian
Mixture Model (GMM). A GMM is a parametric probability
density function represented as a weighted sum of Gaussian
components densities. To illustrate this method, the current
approach is applied using real data from a sensor measuring
the sludge concentration as a function of the settler level at
a wastewater treatment plant (WWTP) in Bromma, Sweden.
Results suggest that the GMM approach is a feasible method
for monitoring and detecting possible disturbances of the
process and fault situations such as sensor clogging. This
approach can be a valuable tool for monitoring processes
with a repetitive profile.

Keywords — signal monitoring, fault detection, clarifier,
sludge profile.

I. INTRODUCTION

The effluent water quality and efficient operation of re-

sources are important aspects considered in the operation of

a wastewater treatment plant (WWTP). Process monitoring

and detection of abnormal conditions are crucial tasks,

since they can help to improve the process performance

[1].

The sedimentation is an important process that deter-

mines the performance of the activated sludge process

(ASP). The sedimentation is given by a secondary settler

tank (SST), also called clarifier, which use gravity to

separate the sludge (biomass) component from the treated

water (liquid). Different approaches for predicting the SST

behavior includes one, two or three-dimensional dynamic

models. However, the prediction of the concentration pro-

files is still far from satisfactory [2], which makes the SST

monitoring a complex task. Some examples of methods

applied to monitor SSTs include image analysis [3] and

model-based approaches [4], [5].

In the last two decades, a research field called Machine
Learning has gained especial attention. The main scope

with Machine Learning is to develop methods that can

automatically detect patterns in data (learning), and then

to use the uncovered patters to predict future data [6].

There are many different approaches in machine learning

including decision trees, data clustering, neural networks,

Gaussian process regression, Gaussian mixture models.

The authors proposed in [7] an approach for monitoring

a SST using Gaussian Process Regression (GPR), giving

useful information about the status of the settler. GPR is

a non-parametric regression method where data prediction

is given as a probability density function. Hence, the pre-

dicted value comes with a variance estimate, interpreted as

an uncertainty of the prediction. The method is thoroughly

described in, for example, [6], [8] and has gained large

interest within the machine learning community for appli-

cations such as fault detection of environmental signals [9],

signal prediction [10], [11] and control of bioreactors [12].

In this work, we propose an alternative method for mon-

itoring the process presented in [7] based on a Gaussian

Mixture Model (GMM). GMM is a parametric probability

model for density estimation using a mixture of Gaussian

distributions [13]. In this way, the GMM can describe a set

of data using the combination of Gaussian distributions. Di-

verse applications of GMM can also be found in literature,

for example in sensor monitoring [14], fault detection and

diagnosis [15].

The paper is organized as follows. First, a general intro-

duction to GMM is presented, including a fault detection

criteria based on the GMM formulation. Then, the problem

of monitoring a secondary settler is presented as case study.

Next, results and discussions are presented. Finally, some

conclusions are drawn.

II. MATERIALS AND METHODS

This section first presents the basics of Gaussian Mixture

Models (GMM). Further, a GMM-based fault detection

criteria is defined.

A. Gaussian Mixture Models

Assume we have a data vector x with N independent

observations from a certain process. In a GMM, the total

distribution of data is modeled as a sum (or mixture) of

several Gaussian distributions with mean μk and covariance

matrix σk. Hence, the model can be expressed as [6]

p(xi) =
K∑

k=1

πkN (xi|μk, σk), i = 1, ..., N (1)

where each Gaussian distribution is denoted by

N (xi|μk, σk). The expression (1) is a combination

of K Gaussian distributions, since we are taking a

weighted sum. The mixing weights πk must satisfy

0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. The resulting function

p(xi) is a probability density function (pdf) from observing

the data xi.
When the value of K-groups is specified, the GMM

parameters πk, μk and σk can be inferred by using the it-

erative Expectation-Maximization (EM) algorithm applied
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to Gaussian Mixtures [6], which can be summarized in

Algorithm 1.

Algorithm 1 EM for Gaussian mixtures

1: Initialize μ1
k, σ

1
k, π

1
k and set i = 1.

2: while not converged do
3: Compute γ(znk). � Expectation step

4: Compute μi+1
k ;πi+1

k ;Nk;σ
i+1
k . � Maximization

step

5: i← i+ 1.

6: end while

The expressions used in Algorithm 1 are

γ(znk) =
πi
kN (xn|μi

k, σ
i
k)∑K

j=1 π
i
jN (xn|μi

j , σ
i
j)
, n = 1, ..., N ; k = 1, ...,K

(2)

μi+1
k =

1

Nk

N∑
n=1

γ(znk)xn, (3)

πi+1
k =

Nk

N
, Nk =

N∑
n=1

γ(znk), (4)

σi+1
k =

1

Nk

N∑
n=1

γ(znk)
(
xn − μi+1

k

) (
xn − μi+1

k

)T
.

(5)

One way to assign a value for K is using the silhouette

criterion, see details in [16]. The silhouette value S esti-

mates how similar samples are in one cluster to samples

in another cluster. S ranges from −1 (data misclassified)

to +1 (data well-clustered), where S close to zero means

that the clusters are indistinguishable.

B. GMM based fault detection criteria

When implementing a GMM to a group of data, the main

idea is to compute a residual r so to monitor and decide

between normal and abnormal profiles in the process. We

assume that r belongs to one out of two different hypoth-

esis: H0 and H1. Hence, the problem can be expressed by

the classical binary hypothesis testing problem

H0 : r ≤ h

H1 : r > h
(6)

where H0 refers to the non-faulty (normal) condition

hypothesis, H1 refers to the faulty (abnormal) condition

hypothesis, and h is a predefined threshold. The aim is

to decide if the system has changed between H0 and H1

when changes in the dynamic of the process are presented.

It is assumed that H0 and H1 are equally likely.

For monitoring a group of profile data, each of them

with N samples, we propose a GMM based residual r as

detailed in Algorithm 2.

As given by expression (6), a fault is decided if r > h,

where the threshold h = max{r}|t∈H0
is the maximum r

obtained during the evaluation of the non-faulty profiles.

Algorithm 2 GMM-based residual calculation

1: Collect a group of M -profiles in non-faulty conditions.

2: Set K and compute the iterative EM algorithm (see

Algorithm 1) to get πk, μk, σk.

3: while monitoring a new profile do
4: for every profile do
5:

r =
1

p(x;π1:K , μ1:K , σ1:K)
, (7)

where

p(x;π1:K , μ1:K , σ1:K) =

N∑
n=1

K∑
k=1

πkN (xn|μk, σk).

(8)

6: end for
7: end while

Hence, the non-faulty profile with data far from the rest of

profiles will determine the value for h.

Note from expression (7) in Algorithm 2 that, the farther

the new profile data is from the non-faulty data, the lowest

the p(x) and the larger the residual r will be.

III. CASE STUDY: MONITORING A SECONDARY

SETTLER

The present approach is tested using real data from a

sensor installed in a secondary settler at Bromma WWTP

in Stockholm, Sweden. The sensor measures the suspended

solids (SS) concentration as a function of the settler level.

The sensor goes from top to bottom of the setter, passing

through the clarification and the thickening zone, and

measuring the level [m] and the SS concentration [g/L], as

shown in Figure 1(a). The profile obtained is called sludge
profile. A typical sludge profile is shown in Figure 1(b).
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Fig. 1: (a) Experiment setup; (b) Typical sludge profile plotted as
level vs. SS concentration.

Note in Figure 1(a) that we indicate a sludge blanket

level, at which there is a jump from lower (less than 0.5

g/L) to higher (above 1 g/L) SS concentration, see Figure

1(b).

The sensor works discontinuously, which means that a

new sludge profile is automatically measured after a certain

period of time (in minutes). The collected data can be

affected by different factors including: changes in the return
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and/or excess of sludge flow rates, sludge scape, large

variations in the influent flow and composition and sensor

clogging.

As part of the experiment, two additional measurements

were recorded: the level at which the SS concentration is

equal to 0.5 g/L (called fluff level) and equal to 2.5 g/L

(called sludge level). We will refer to these levels during

the results and discussions of the experiment.

IV. RESULTS

Figure 2(a) shows M = 15 sludge profiles in non-

faulty conditions used for calculating the GMM. Figure

2(b) shows the non-faulty sludge profiles plotted using dots.

The highest silhouette value obtained was S = 0.77 with

K = 3, which means that the optimal number of clusters

is three, as shown in Figure 2(c). Figure 2(d) shows the

contours of the probability density function of the GMM.
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Fig. 2: (a) Sludge profiles used to get the GMM; (b) Sludge profile
data in (a) plotted using dots; (c) Clusters of the data in (b); (d)
Contours of the GMM pdf, color scale indicates the value of the
pdf contours.

The GMM parameters πk, μk, and σk obtained for the

data in Figure 2 are shown in Table I. There we denote

x =
[
x1 x2

]
, where x1 = {SS conc.} and x2 = {level}.

Then μk and σk are

μk =

[
mean(x1)
mean(x2)

]
,

σk =

[
cov(x1, x1) cov(x1, x2)
cov(x2, x1) cov(x2, x2)

]
,

where k = 1, 2, 3 refer to Cluster 1, 2, 3, respectively, as

shown in Figure 2(c)-(d).

The monitoring of the settler was carried out in several

trials. As illustration, we present one trial which consisted

of 33 days of monitoring, where a new sludge profile was

collected every 15 minutes, giving a total of 3168 sludge

profiles. In order to see the evolution of the sludge profiles

during time, they are shown after 10, 20 and 30 days

TABLE I: GMM parameters

Weight Mean Covariance

π1 = 0.4329 μ1 =

[
0.0958

4.1102

]
σ1 =

[
0.0074 −0.0223
−0.0223 0.7084

]

π2 = 0.3405 μ2 =

[
1.5065

1.8203

]
σ2 =

[
0.1446 −0.1840
−0.1840 0.3550

]

π3 = 0.2265 μ3 =

[
3.3421

0.4691

]
σ3 =

[
0.3612 −0.1208
−0.1208 0.0866

]
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Fig. 3: Total of sludge profiles during SST monitoring after: (a)
10 days; (b) 20 days; (c) 30 days.

of running the experiment, as shown in Figure 3(a)-(c),

respectively.

Figure 4 shows the evolution of the fluff and sludge level,

as well as the residual r. The residual r is colored from

dark blue (beginning of experiment) to dark red (end of

experiment), which correspond to the same range of colors

assigned to the sludge profiles shown in Figure 3.
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Fig. 4: (a) Fluff level (blue line) and sludge level (red line); (b)
Residual r (colored dots) and threshold h (black horizontal line).
Gray zones refer to Period I and II, see details in Section V.
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V. DISCUSSIONS

As mentioned in the case study, a typical sludge profile

has an abrupt change in the SS concentration around the

sludge blanket level, see the profiles in Figure 2(a). This

jump in the SS concentration was captured by the GMM,

which classifies the data points before the jump as Cluster

1, and data points after the jump as Cluster 2, as shown

in Figure 2(c). Also note that the data points with levels

close to zero (bottom of the settler) and with high SS

concentration were classified as Cluster 3.

From the total of profiles collected during the experi-

ment, we highlight 2 groups of profiles marked as Period

I and II in Figure 4. Period I refers to large variations in

the influent flow rate, causing fluctuations in the sludge

blanket, this effect can also be seen in the oscillatory

variation of the fluff level (see Figure 4(a)). The sludge

profiles of this Period are shown in Figure 5(a). Note in this

Figure that several data points at concentrations between 1

and 2 g/L are located far from the pdf contours with high

values obtained from non-faulty data, which results in large

values for r.
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Fig. 5: Group of sludge profiles for periods indicated in Figure
4. (a) Period I; (b) Period II. The plots include the contours of
the probability density function shown in Figure 2(b).

Another type of events was related to sensor clogging,

which began to be detected in profiles during Period

II. This clogging event was confirmed by in-situ ocular

inspection of the sensor and the existence of floating sludge

at the surface level of the settler, promoting sludge escape.

Figure 5(b) shows the sludge profiles of this Period. Note

in this Figure that several data points are located far from

the pdf contours with high values obtained from non-

faulty data, particularly at concentrations below 0.5 g/L

and between 1 and 2 g/L, which results in large values for

r, sometimes even larger than those obtained in Period I.

Note that the data from both periods include outliers.

Outliers are defined as sharp changes in the measured

values between two successive data. For our case study,

outliers in the sludge profiles mean that the measured

data is far from the contours obtained with the non-faulty

profiles (cf. Figure 2(d)). If there are several outliers in a

given sludge profile, it will result in a large value for r.

In this study, data correction from outliers was not part

of the work. For a process with several events of outliers,

the profiles reconstruction could be given by relocating the

outliers using the GMM pdf.

Missing data is another possible situation when mon-

itoring profiles. This is, when the amount of data in a

given profile is incomplete. in the same way as in the case

of outliers, the profiles reconstruction could be given by

assigning the missing data using the GMM pdf.

Observe that collecting data from two sensors measuring

the same process, the total dataset from each sensor will

be different, resulting that each sensor will have a unique

probability density function. This means that the present

methodology has an important advantage, since is not just

applied to specific sensors or processes but to sensors or

processes from diverse areas.

A possible application for the current approach is to use

the residual value r as a tool for a control action. In this

way, it would be possible to formulate different control

strategies based on, for example, changes in the recycle

flow rate of the WWTP, in order to keep the new sludge

profiles as similar as possible to the non-faulty profiles.

VI. CONCLUSIONS

A Gaussian Mixture Model approach for monitoring and

detecting faulty profiles was presented. The main idea was

to calculate a residual from a set of non-faulty profiles. The

calculation of this residual defines a threshold value, which

is used to decide between normal and abnormal profiles.

As illustration, the approach was applied to monitor

a sensor collecting sludge profiles (level vs. suspended

solids concentration) of a secondary settler in a wastewater

treatment plant. Results suggest that this approach can

be a valuable tool for monitoring the performance of the

process.
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