
Detecting anomalous air flow-ammonia load ratios, using Gaussian process 

regression 

 

Abstract 
In this paper we propose a method to detect abnormal air flow-ammonia load ratios in active sludge 

basins. The purpose is to detect faulty sensors and process disturbances affecting the air flow-

ammonia load ratio.  The method is based on Gaussian process regression, and is evaluated on plant 

data. Results indicate that drift in an ammonia on-line sensor, over flow during storm events and 

changed sludge properties can be detected by the proposed method.  
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Introduction 
Accurate sensor readings are essential to monitor and control a wastewater plant (WWTP) in a robust 

and resource-efficient way. However, plant data include faulty sensor data, partly due to harsh 

measurement conditions. On-line ammonia sensors, important for aeration control, is one example of 

sensors which are prone to have erroneous measurements (Åmand 2014).  

Several monitoring and fault detection methods have been proposed, although rarely used in full-scale 

applications (Olsson et al. 2014). Air flow ratio between parallel active sludge lines has recently been 

used to detect faulty DO sensors (Carlsson & Zambrano 2013). Further, control strategies based on air 

flow and ammonia load have successfully been implemented (Svardal et al. 2003). In this paper, we 

make use of a non-parametric probabilistic data based method, Gaussian process regression (GPR), to 

monitor and detect anomalous air flow-ammonia load ratios. Anomalies include drifting sensor values, 

in particular from on-line ammonia sensors, and process disturbances. Further, we evaluate the 

applicability of GPR on real WWTP data using a standard GPR implementation (Rasmussen & 

Williams 2005) and a novel GPR with a sequential Monte Carlo implementation (Svensson et al. 

2015). Both methods were used to map the potentially non-linear relationship between ammonia load 

and air consumption.  

Methods 
One straightforward approach would be to simply monitor the ratio of air flow and ammonia load, 

with upper and lower critical limits. However, the specific air flow, i.e. used air per treated amount of 

ammonia, is affected by e.g. ammonia load and diurnal variation. A general approach should include 

this information, only detecting anomalies relevant to actual conditions. 

In this study we model the correlation between air flow and ammonia load as a Gaussian process. 

Gaussian process regression 

A Gaussian process is a stochastic process 

𝑓(𝑥𝑖) ~ 𝐺𝑃 (𝑚𝜃1
(𝑥𝑖), 𝑐𝑜𝑣𝜃2

(𝑓(𝑥𝑖), 𝑓(𝑥𝑗))), 

which is fully described by its mean, 𝑚𝜃1
(𝑥𝑖), and covariance function, 𝑐𝑜𝑣𝜃2

(𝑓(𝑥𝑖), 𝑓(𝑥𝑗)). In this 

study, 𝑓(𝑥𝑖) is the modelled airflow at ammonia load 𝑥𝑖. Since 𝑓(𝑥) is modelled as a GP, any 

collection of air flow values are assumed to be jointly Gaussian 

[𝑓(𝑥1), … , 𝑓(𝑥𝑁)] ~ 𝑁(𝜇, 𝐶) 

with mean values 𝜇𝑖 = 𝑚𝜃1
(𝑥𝑖), and a 𝑁 × 𝑁 size covariance matrix 𝐶. In this study, mean values 

𝜇𝑖 = 𝑚𝜃1
(𝑥𝑖), correspond to a specific air flow at a given ammonia load. In Figure 2, the predicted 

mean is shown (solid black line) together with its confidence boundaries (dashed blue lines). For a 

detailed description of Gaussian processes, see (Rasmussen & Williams 2005). 



The covariance function, also known as kernel, can be considered as a regularization matrix (Chen et 

al. 2012), in terms of regression. Here, we use an exponential covariance function. Although originally 

claimed to be non-parametric, most kernels contain a set of hyper parameters, 𝜃2, which in the 

simplest approach are found by maximizing the likelihood function (ML). A non-parametric approach 

involves a prior probability distribution over the hyper parameters, which can be approximated by e.g. 

Monte Carlo methods. Here, we use a novel algorithm aiming at a non-parametric approach, based on 

a sequential Monte Carlo method (GPR-SMC) described in (Svensson et al. 2015). 

Method workflow 

In this study, the following steps were applied:  
1) Define training data, 𝑥𝑇, for air flow, influent flow and ammonia concentration 

𝑥𝑇 ∶= {𝑄𝑎𝑖𝑟1,…,𝑡
, 𝑄𝑓𝑙𝑜𝑤1,…,𝑡

, 𝐶𝑁𝐻41,…,𝑡
} 

2) Compute training (normal) air flow-ammonia load ratio using GPR 

𝑓(𝑥𝑇)~ 𝐺𝑃 (𝑚𝜃1
(𝑥𝑇𝑖

), 𝑐𝑜𝑣𝜃2
(𝑓(𝑥𝑇𝑖

), 𝑓(𝑥𝑇𝑗
))) 

3) Evaluate test data, 𝑥𝐸 , and mark observations outside 95 percent confidence interval  

“Above normal airflow”: 𝑓(𝑥𝐸𝑖
) > 𝑚𝜃1

(𝑥𝑇𝑖
) + 1.97 √𝑐𝑜𝑣𝜃2

(𝑓(𝑥𝑇𝑖
), 𝑓(𝑥𝑇𝑗

)) 

“Below normal airflow”: 𝑓(𝑥𝐸𝑖
) < 𝑚𝜃1

(𝑥𝑇𝑖
) − 1.97 √𝑐𝑜𝑣𝜃2

(𝑓(𝑥𝑇𝑖
), 𝑓(𝑥𝑇𝑗

)) 

An on-line implementation would be more general and include additional steps with recursive update 

of training data, compensating for seasonal variation. 

Data set 

The data set include 1 hour measurements of airflow, ammonia concentration (on-line sensor) and 

influent water flow to the biological treatment step at Bromma WWTP, during 2014-05-05 to 2014-

08-04. A higher sampling frequency will be evaluated in future studies, however in this initial study, 1 

hour samples were considered to capture the main process features. During the measurement period, 

three storm weather events, with overflow, occurred. During time 𝑡 = 350, … ,1000, a negative drift in 

the ammonia sensor was identified, see Figure 1, and will be referred to as the Faulty period. During 

the subsequent period, 𝑡 = 1001, … ,1800, a similar negative trend was identified, due to a lower 

wastewater load during summer holidays. However, this trend could be explained by a decrease in 

ammonia concentration, confirmed by lab analyses, i.e. the Non-faulty period. 

Results and discussion 
Faulty ammonia sensor 

In Figure 1, several detections during the faulty period were indicated by the proposed method, 

indicated as black circles. It is logical that the detections are marked as “Above normal airflow”, since 

the ammonia load is underestimated by a faulty ammonia sensor.  

Overflow detection during storm weather 

During the non-faulty period, some sharp valleys at 𝑡 = 1080,1810,1900 were detected as “Below 

normal air flow”, indicated by red circles. The detections coincide with peak flow during storm 

weather, and a by-pass of 5-30% of the influent flow. Thus, only a reduced part of the measured 

ammonia influent was treated, and subsequently the load was overestimated. 

Changed sludge properties 

The detections “Above normal airflow” at 𝑡 = 1820, … ,1900 were originally considered as false 

positive detections. However, a closer examination of the original data showed an increased airflow 

during the period, and an increase in suspended solids concentration (not shown here) caused by 

release of sludge from an anaerobic digester. 

Valve conditioning  



Every third day, all air valves which are not used during normal operation, are operated during one 

hour to prevent valve stiction. This temporarily increase the total airflow by approximately 2 percent. 

It was not possible to detect the valve opening events, most probably because the additional airflow is 

within the range of what could be considered normal operation. I.e. the sensitivity of the method is too 

low to detect such small changes in airflow. 

 

 
Figure 1. Ammonia concentration measured by on-line sensor (blue solid line) at Bromma WWTP. Weekly lab analyzes 
(black solid line) were used to identify faulty sensor measruments. Detections by the proposed method are marked 
with black circles (higher airflow than normal), and as red circles (lower air flow than normal). 

In Figure 2, observations from both training data, 𝑥𝑇, and test data, 𝑥𝐸  are plotted as ammonia load 

with respect to air flow. The estimated mean value of the non-linear mapping by GP,  𝑚𝜃1
(𝑥𝑖), together 

with 2 standard deviations confidence interval (blue dots). Observations below (above) confidence 

limit indicate a lower (higher) air flow-ammonia load ratio than predicted by the training data, and are 

marked with black (red) circles. 

 
Figure 2. Detections of data which deviate from training data. Black circles (red circles) indicate higher (lower) air flow 
per ammonia load. 

It is clear that the cluster of faulty observations lies outside the training data considering the mean 

prediction of the GPR and the confidence limits. It can be seen that the confidence interval increases 



for extreme loads, i.e. below 15 g/s and above 80 g/s. This is a property of GPR where the uncertainty 

estimate increases in regions with sparse amount of data, i.e. unknown regions. One could argue that 

this would make this method restrictive in the sense, not to make false positive detections.  

Gaussian process regression – sequential Monte Carlo 

Initially, the standard approach involving ML to estimate the hyper parameter values was used. 

However, optimizations quickly converged to local optimal solutions, resulting in mostly meaningless 

predictions (not shown here). Further, it was clear that the initial hyper parameter values were strongly 

linked to the values after optimization, suggesting several local minima. Predictions made by the non-

parametric method, GPR-SMC, can be seen in Figure 2 (solid grey lines). The predictions are similar, 

indicating the robustness of the method. One randomly selected mean prediction from GPR-SMC was 

used to map the air flow-ammonia load ratio (solid black line). 

As indicated by the results, changes in sludge properties, influent COD and overflow, were detected as 

anomalies. However, we are primarily interested in detecting sensor faults, and the aforementioned 

factors should be included in the model. It is straightforward to add extend GPR to handle additional 

variables, although additional variables add complexity to interpret anomalies and further fault 

identification. 

Conclusions 
We have proposed a method which detects abnormal air flow-ammonia load ratios. One common 

anomaly is erroneous ammonia measurements which were successfully detected. The proposed 

method uses Gaussian process regression with sequential Monte Carlo optimization which gave robust 

results on real plant data. 
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