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Abstract: An approach based on Gaussian Process Regression for monitoring the sludge profile of 
a secondary settler is proposed. Gaussian Process is a probabilistic, nonparametric model with an 
uncertainty prediction. The approach is illustrated using data from a sensor measuring the sludge 
concentration in a settler as a function of the settler level at Bromma wastewater treatment plant 
(WWTP). Results suggest that the approach is feasible for monitoring and fault detection of the 
sludge settling process. 
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INTRODUCTION 
Increasing demands on effluent water quality and resource efficient operation are important driving 
forces for wastewater treatment plants (WWTP's). Process monitoring and detection of abnormal 
process conditions are important tools to secure a robust and efficient process. Furthermore, an 
increased amount of sensors, adding process information but also complexity for plant operators, 
contributes to the need of fault detection methods. 

Sedimentation is one of the most important processes which determines the performance of the 
activated sludge process (ASP), nevertheless the performance of secondary settling tanks (SST's) is 
often far from satisfactory (Li and Stenstrom 2014). A great effort has been put in to understand, 
model and predict the settling behavior. The current knowledge about one-dimensional settling 
models can be found in a recent review by (Li and Stenstrom 2014) and the references therein. 
Despite increased knowledge in settling behavior, the number of full-scale applications to monitor 
the condition of the SST is limited. Some examples of existing monitoring methods for SST 
performance include methods based on: image analysis (Grijspeerdt and Verstraete 1997) and 
model-based approaches (Traoré et al. 2006, Yoo et al. 2002).  

One alternative to previously mentioned monitoring methods would be a data-based approach. 
Here, Gaussian process regression (GPR) is one possible technique. GPR is a non-parametric 
regression method where a prediction of the response variable is given as a probability density 
function. Thus, the predicted value of the response variable comes with a variance estimate, which 
is interpreted as an uncertainty measure of the prediction. The method is thoroughly described in 
(Rasmussen and Williams 2005) and has gained large interest within the machine learning 
community, and more recently within systems identification (Chen et al. 2012). It is worth to note 
that GPR is not a new concept,  it was originally known as Kriging, with an origin from 
geostatistics in the 1950s (Cressie 1990).  

GPR has several properties making it useful for fault detection, such as: probabilistic prediction 
including an uncertainty estimate, flexible regression in a non-parametric fashion, and it is 
relatively simple to implement in common programming languages. Although GPR is a non-
parametric method, an appropriate covariance function, has to be selected by the user. The 
covariance function determines the model structure of the GPR and prior knowledge can be 
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included. It is an active area of research of how to construct good covariance functions, see e.g. 
(Lloyd et al. 2014) for an automated selection approach.  

GPR has been used for fault detection in a wide area of applications (Roberts et al. 2013). Some 
examples are: maritime vessel track analysis (Smith et al. 2012), change point detection (Garnett et 
al. 2010), bearings (Boškoski et al. 2015) and process monitoring (Serradilla et al. 2011). GPR has 
also been used in various environmental applications such as: monitoring of water quality sensors 
(Osborne et al. 2012), modelling of an anaerobic wastewater treatment system (Ni et al. 2012), 
modelling nitrification process and biomass growth (Ažman and Kocijan 2007), uncertainty 
analyses of an anaerobic digestion model (Južnič-Zonta et al. 2012) and for control of an SBR-
reactor (Kocijan and Hvala 2013). 

The objective of this study is to present a GPR-based approach for monitoring the sludge profile of 
a secondary settler in an activated sludge process. The aim is to automatically detect deviations 
from normal conditions. The main concept of this approach is to use the GPR methodology to 
obtain a non-faulty zone, where the mapping of new profiles is evaluated. Hence, this mapping is 
used to decide if the new profile belongs to non-faulty or faulty condition. 

The paper is organized as follows. First, an introduction to Gaussian Process Regression is detailed, 
which includes the fault detection criteria based on the GP implementation. Later, a case study 
showing a practical application of the GP-approach is presented. Next, results and discussions are 
included. Finally, conclusions are drawn. 

GAUSSIAN PROCESS REGRESSION 
A Gaussian Process (GP) is a collection of random variables which has a joint Gaussian 
distribution. Assume we observe some inputs 𝑥𝑥𝑖𝑖 and some outputs 𝑦𝑦𝑖𝑖 from a certain process, and 
that 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖). The optimal approach is to infer a distribution over functions given the data. A GP 
is completely specified by its mean 𝑚𝑚(𝑥𝑥𝑖𝑖) and covariance function 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�, and a distribution over 
the functions 𝑓𝑓(𝑥𝑥𝑖𝑖) can therefore be expressed as 

 𝑓𝑓(𝑥𝑥𝑖𝑖) ~ 𝐺𝐺𝐺𝐺 �𝑚𝑚(𝑥𝑥𝑖𝑖), 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��   (1) 

The mean and covariance functions involve a vector of parameters (called hyperparameters) 
required for the model. The simplest approach to optimize the hyperparameters is to maximize the 
log-likelihood function of the dataset, see more details in (Rasmussen and Williams 2005).  

 ln[𝑝𝑝(𝒀𝒀|𝑿𝑿)] = −
1
2
𝒀𝒀𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1𝒀𝒀 −

1
2

ln(|𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼|) −
𝑁𝑁
2

ln(2𝜋𝜋) (2) 

where 𝑿𝑿 = [𝑥𝑥1, … , 𝑥𝑥𝑁𝑁] and 𝒀𝒀 = [𝑦𝑦1, … , 𝑦𝑦𝑁𝑁]𝑇𝑇 are 𝑁𝑁 observed data with Gaussian noise of variance 
𝜎𝜎𝑛𝑛2, 𝐾𝐾 = 𝑘𝑘(𝑿𝑿,𝑿𝑿) is a 𝑁𝑁 × 𝑁𝑁 covariance matrix of the training dataset, 𝐼𝐼 is a 𝑁𝑁 × 𝑁𝑁 identity matrix. 

A regression in a GP means that, based on the given data set 𝐷𝐷 = (𝑿𝑿,𝒀𝒀), and a new input 𝑥𝑥∗, we 
wish to find the predictive distribution of the associated output 𝑦𝑦∗. The predictive distribution of 𝑦𝑦∗ 
over 𝐷𝐷 is Gaussian described by 

 𝑝𝑝(𝑦𝑦∗|(𝑿𝑿,𝒀𝒀), 𝑥𝑥∗) = 𝒩𝒩(𝑚𝑚∗(𝑥𝑥∗),𝜎𝜎∗2(𝑥𝑥∗))  (3) 

with mean 𝑚𝑚∗(𝑥𝑥∗) and covariance 𝜎𝜎∗2(𝑥𝑥∗) (Rasmussen and Williams 2005) 

 𝑚𝑚∗(𝑥𝑥∗) = 𝒌𝒌∗
𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1𝒀𝒀   (4) 

 𝜎𝜎∗2(𝑥𝑥∗) = 𝑘𝑘∗∗ − 𝒌𝒌∗
𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1𝒌𝒌∗ (5) 

where 𝒌𝒌∗ = [𝑘𝑘(𝑥𝑥1, 𝑥𝑥∗), … , 𝑘𝑘(𝑥𝑥𝑁𝑁, 𝑥𝑥∗)]𝑇𝑇 is a 𝑁𝑁 × 1 vector of covariance between the test and the 
training dataset, 𝑘𝑘∗∗ = 𝑘𝑘(𝑥𝑥∗, 𝑥𝑥∗) is the auto-covariance of the test dataset. 
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For all calculations, MATLAB and GPML-toolbox (Rasmussen and Nickisch 2010) have been 
used. 

Fault detection criteria 
The implementation of GP involves a residual calculation 𝑟𝑟𝐺𝐺𝐺𝐺. This residual is used to monitor and 
identify possible faulty conditions in the process. We assume that 𝑟𝑟𝐺𝐺𝐺𝐺 belongs to one out of two 
different hypotheses: 𝐻𝐻0 and 𝐻𝐻1. The problem can be expressed by the classical binary hypothesis 
testing problem 

 𝐻𝐻0:
𝐻𝐻1:  

𝑟𝑟𝐺𝐺𝐺𝐺  ≤ ℎ
𝑟𝑟𝐺𝐺𝐺𝐺  > ℎ (6) 

where 𝐻𝐻0 is the non-faulty condition hypothesis and 𝐻𝐻1 is the faulty condition hypothesis, ℎ is a 
predefined threshold. The aim is to decide if the system has changed between 𝐻𝐻0 and 𝐻𝐻1 when 
changes in the dynamic of the process are presented. It is assumed that 𝐻𝐻0 and 𝐻𝐻1 are equally likely. 

For a given group of profiles, we propose the following steps to compute the residual 𝑟𝑟𝐺𝐺𝐺𝐺:  

Step 1: Collect profiles in non-faulty condition (training dataset (𝑿𝑿,𝒀𝒀)). 
Step 2: Select a covariance function and determine the hyperparameters by maximizing 

expression (2).   

Step 3: Obtain the predictive distribution p(y∗|(X, Y), x∗) as described by expressions (3) to 
(5). 

Step 4: For a new jth profile formed by 𝑿𝑿∗ = [𝑥𝑥∗1, … , 𝑥𝑥∗𝑖𝑖, … , 𝑥𝑥∗𝑁𝑁] and 
𝒀𝒀∗ = [𝑦𝑦∗1, … ,𝑦𝑦∗𝑖𝑖 , … , 𝑦𝑦∗𝑁𝑁] compute: 

𝑟𝑟𝐺𝐺𝐺𝐺(𝑗𝑗) = 1
𝑁𝑁
∑ 𝑣𝑣(𝑖𝑖)𝑁𝑁
𝑖𝑖=1   ;  where  𝑣𝑣(𝑖𝑖) = � 10     if  |𝑦𝑦∗𝑖𝑖 − 𝑚𝑚∗(𝑥𝑥∗𝑖𝑖)| > 2𝜎𝜎∗(𝑥𝑥∗𝑖𝑖) 

otherwise
         (7) 

 

A fault is decided if 𝑟𝑟𝐺𝐺𝐺𝐺(𝑗𝑗) > ℎ, where the threshold ℎ = max{𝑟𝑟𝐺𝐺𝐺𝐺 }|𝑡𝑡 ∈ 𝐻𝐻0 is the maximum 𝑟𝑟𝐺𝐺𝐺𝐺 
obtained during the training dataset.  

Note that the predictive distribution is then used for mapping the new profile. Then, the more the data in 
the new profile is outside the predictive distribution, the larger the residual 𝑟𝑟𝐺𝐺𝐺𝐺 will be. 

CASE STUDY: MONITORING A SECONDARY SETTLER 
The approach is tested using real data from a sensor installed in a secondary settler at Bromma 
WWTP in Stockholm, Sweden. The sensor measures the suspended solids (SS) as a function of the 
settler level. As shown in Figure 1a, the sensor goes from top to bottom of the settler measuring the 
level [m] and the SS concentration [g/L]. The profile obtained is called sludge profile. A typical 
sludge profile is shown in Figure 1b.  

  
Figure 1. a) Experiment setup; b) Typical sludge profile plotted as level vs concentration. 
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The sensor works discontinuously, which means that a new sludge profile is automatically 
measured after a certain period of time (in minutes). The data contained in the sludge profile can be 
affected by different reasons, including: changes in the return and/or excess of sludge flow rates, 
sludge scape, large variations in the influent flow and composition and sensor clogging. In this 
study, the aim is to detect events such as sludge escape and sensor clogging.  

As part of the experiment, two additional measurements were recorded: the level at which the SS 
concentration is equal to 0.5g/L (called fluff level) and 2.5g/L (called sludge level). We will refer to 
these levels during the results and discussions of the experiment. 

For the Gaussian distribution, we choose 𝑥𝑥 representing the level of the sensor and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 
representing the SS concentration. The covariance function suitable for our case study was  

 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = (𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏 ) + exp �−𝛽𝛽0�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2�  (8) 

where the unknown hyperparameters (𝑎𝑎, 𝑏𝑏,𝛽𝛽0) are determined from the training dataset. The 
function in (8) is a composition of a linear function and a squared exponential function. 

RESULTS  
Figure 2a shows several profiles in non-faulty conditions used as training dataset. Figure 2b shows 
the predictive mean value (red line) along with ±2𝜎𝜎∗ (the predictive distribution of the standard 
deviation) given by the regression in the GP, see expressions (4) and (5).  

  
Figure 2. a) Sludge profiles (blue lines) used as training dataset 𝐷𝐷; b) Predictive distribution over 
the training dataset 𝐷𝐷 (plotted using blue dots), showing 𝑚𝑚∗ (red line) ±2𝜎𝜎∗ (grey zone). 

A total of 17 sludge profiles in non-faulty condition were used as training dataset. Observe from 
Figure 2b that the predictive distribution provides an interpolation between the training dataset. 
Once the predictive distribution is obtained, the monitoring of a new sludge profile is feasible, as it 
was described by the Step 4 for computing the residual profile 𝑟𝑟𝐺𝐺𝐺𝐺, see expression (7). 

Several trials were performed to validate the approach, each of them formed by several sludge 
profiles. As illustration, we present one trial which consisted of 33 days of settler monitoring. A 
new sludge profile was measured every 15 minutes, giving a total of 3168 sludge profiles. In order 
to see the evolution of the profiles during time, these are shown after 10, 20 and 30 days of the 
experiment, as depicted in Figure 3a to Figure 3c, respectively. 
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Figure 3. Total of profiles scanned: a) after 10 days; b) after 20 days; c) after 30 days. 

Figure 4 shows the profile of the GP residual 𝑟𝑟𝐺𝐺𝐺𝐺 for the experiment, and for comparison, both the 
fluff level and the sludge level profiles are also plotted. 

a) 

 

b) 

Figure 4. a) Fluff level (blue line) and sludge level (red line); b) GP residual 𝑟𝑟𝐺𝐺𝐺𝐺 profile and 
threshold ℎ (horizontal black line). 

The residual profile 𝑟𝑟𝐺𝐺𝐺𝐺 is coloured from dark blue (beginning of experiment) to dark red (end of 
experiment), which correspond to the same range of colours assigned to the sludge profiles in 
Figure 3.  

Figure 4 shows some abnormal behaviours obtained during the experiment, marked as Period I to 
III. In particular, Period I refers to large variation in the influent flow rate, causing fluctuations in 
the sludge blanket, this effect can also be seen in the variation of the fluff level profile, see the 
sludge profiles of this event in Figure 5a. Note also some peaks in the 𝑟𝑟𝐺𝐺𝐺𝐺 occurring in Period II, 
which were due to abrupt changes in the sludge profile at the beginning of the measurement, see 
Figure 5b. Another type of event was the sensor clogging, which started to be detected for profiles 
in Period III. This event was confirmed by ocular inspection of the sensor and the existence of 
floating sludge at the surface level, promoting sludge escape, see the sludge profiles of this event in 
Figure 5c.  

   
Figure 5. Sludge profiles for different periods. a) Period I; b) Period II; c) Period III. The 
predictive distribution of the training dataset (grey zone) is also shown. 
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DISCUSSIONS  
As shown previously, the predictive distribution is a key factor in the GP-based approach. An 
important aspect that determines the predictive distribution of the process is the choice of the 
covariance function. The covariance function used in this study (see expression (8)) is formed by 
two widely used functions, which based on the predictive distribution obtained (see Figure 2b), this 
function was suitable for this particular case study. The mean function, first part of  expression (8), 
was required to obtain a negative slope of the sludge profile, i.e. a non-stationary process. The 
remaining part of (8), the exponential covariance function, is widely used in GPs and can be seen as 
a smoothing function. For a different process, giving a different profile, it may require a new 
definition of the covariance function. Examples concerning the choice of covariance functions to 
different kind of datasets can be found in (Lloyd et al. 2014) and in (Wilson 2013). 

The approach shown in this study can be used to improve the data quality of the sensor, e.g. when a 
profile includes outliers. An outlier can be defined as a sharp change in the measured value between 
two successive data. In our case study, a sludge profile with outliers means that this data is far from 
the predictive distribution (grey zone in Figure 2b). This results in a GP residual 𝑟𝑟𝐺𝐺𝐺𝐺 larger than the 
threshold. For our case study, the management of outliers was not relevant. For a process where this 
situation is recurrent, the reconstruction of the profile can be performed by doing a mapping from 
the predictive distribution. Then, by defining, for example, a region larger that ±4𝜎𝜎∗ or than ±5𝜎𝜎∗ 
as the region for outliers, then this faulty data is replaced by the predictive mean 𝑚𝑚∗(𝑥𝑥∗), as shown 
in expression (4). 

Another example of improving data quality is when the sludge profile has missing data, i.e. when 
the amount of data in a profile is incomplete. In our case study we did not deal with this situation 
but the GP approach can be applied to solve this problem. Similar to the case of the outliers, the 
reconstruction of the missing data can be performed by mapping the new value from the predictive 
mean. Naturally, if a sludge profile has several missing data, an alarm must be decided. The number 
of allowed missing data must be previously defined. 

The implementation of the GP-based approach will be determined by a proper definition of the 
predictive distribution of the process. During the GP design, an approximate idea of the shape of 
this predictive function will help in the definition of the predictive function. 

It is important to remark that given two single sensor measuring the same process, both of them will 
have different training datasets, resulting that each sensor will have a unique predictive distribution 
for monitoring and fault detection. This gives a remarkable advantage of the developed 
methodology, because it is a general methodology and not only applicable to data from a specific 
sensor or process.  

Apart from monitoring and fault detection, a possible application of this approach is to use the 
information given by the residual profile 𝑟𝑟𝐺𝐺𝐺𝐺 as a control action. In this way, the final goal is to 
perform the reliability of the settler and, as consequence, the performance of the WWTP. 

CONCLUSIONS 
A GP-based approach for monitoring and fault detection of sludge profiles of a secondary settler in 
a wastewater treatment plant is presented. From a set of non-faulty profiles, the main idea is to 
obtain a non-faulty zone by means of the GPR methodology. With the aid of this zone, the mapping 
of a new profile can be evaluated and possible abnormal profiles can be detected. As a practical 
example, real data was used. Results suggest that this approach can be a valuable tool for 
monitoring the performance of the settler.  
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