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Abstract: In this paper, we consider the problem of fault detection and isolation in the aeration system 
of an activated sludge process. The purpose is to detect and localize possible faults in dissolved oxygen 
and air flow sensors. The dissolved oxygen in each aerated zone is assumed to be controlled 
automatically. As the basis for a fault detection algorithm we use the ratio of air flow rates into 
different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model nº1 
by Monte Carlo simulations, and using data from a wastewater treatment plant. The fault detection 
method shows good results for a correct and early fault detection and isolation.  
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Introduction 

Fault detection (FD) and isolation is an active area of research due to the increasing 
complexity of industrial processes and growing demand for safety and reliability, the 
wastewater treatment plants (WWTPs) are not an exception. Besides the monitoring, 
the sensors are used for automatic control (eg. feedback and feedforward control) of 
plant performance. A necessary condition for a control system to work efficiently is 
that the sensor used in a control law is reliable. If this sensor gives a wrong value, too 
much resources (eg. energy for aeration) may be used or the treatment results may be 
poor (eg. high concentrations of ammonia in the effluent). The use of hardware 
redundancy, e.g. multiple sensors for the same variable, reduces the problem of a 
sensor fault, but is expensive and introduces complexity in the system.  

Many different approaches have been suggested for FD applied to single or multiple 
variables in biological processes. Yoo et al. (2002) propose a modified PCA 
considering the importance of each transformed variable and not only the relative 
magnitude of the variance change. Baggiani and Marsili-Libelli (2009) show a 
dynamic PCA-based algorithm that can detect sensor failures in WWTPs. Corominas 
et al. (2011) present a comparison of different univariate FD methods (Shewhart, 
EWMA, and residuals EWMA) applied to the Benchmark Simulation Model No.1 
long-term (BSM1_LT), where the sensor FD was studied in sensors under closed loop 
control. This problem poses special challenges, if a sensor signal is used in feedback 
control law, a fault in the sensor may not be visible from the sensor signal itself since the 
controller strive to keep the (possible faulty) sensor signal equal to the set point. 

In this paper, the problem to detect and isolate sensor faults in the aeration system 
of an activated sludge process (ASP) is considered. In particular, faulty dissolved 
oxygen (DO) sensors under closed loop control. As the basis for the FD algorithm we 
use the ratio of air flow rates into different zones. The method is evaluated in two 
cases: using the Benchmark Simulation Model nº1 (BSM1) by Monte Carlo 
simulations, and using data from a WWTP.   

The paper is organized as follows. First, two methods for detecting faults in DO 
sensors are outlined. Next, two case studies are described and the results from the 
methods are shown. Finally, discussions and conclusions are drawn. 
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Material and Methods 

Consider an ASP with N aerated zones. The DO in each aerated zone is assumed to be 
controlled automatically. The airflow  in every zone is known. 

The Airflow Method (AM) 
One method to detect faulty DO sensors in several aerated zones is by monitoring the 
airflow rate in every zone. In this method, a sensor fault in zone i is decided if:  

 			 ; for 1, 2, … ,  (1)

where ai and bi are the minimum and maximum bounds respectively, defined as: 

 ∙ min
∈

   ;    ∙ max
∈

  (2)

where   is a low-pass filtered value of the airflow rate into zone i.  and 
	are threshold factors used to define the lower and upper bounds, respectively. A 

is a set of data in non-faulty conditions. 

The Airflow Ratio Method (ARM) 
The ARM calculates bounds on airflow ratios during normal (non-faulty) conditions 
and uses these bounds to detect sensor faults. In this method, a fault is decided if:  

 
, , 	;  for 1,2… , ; 1,2, … ,   (3)

where , , ,  is a threshold calculated in non-faulty conditions. α ,  is a 

threshold factor. , max /
∈

. A is a set of data in non-faulty 

conditions. Given N zones, there are N(N-1) airflow ratios , . Therefore, a fault is 
decided if any of these ratios is above its threshold value. Details concerning AM and 
ARM can be found in Carlsson et al. (2013) and Carlsson and Zambrano (2013).  

Fault isolation 
Since AM is based on the signal monitoring in every zone, the isolation of the fault in 
zone i is given when a sensor fault in zone i is decided. For ARM, the methodology to 
decide the isolation of a fault is different. For example, consider the case of a positive 
bias in a DO sensor of zone i. The airflow rate in this zone will tend to decrease, then 
all the fj,i ratios are likely to be greater than the correspondent , . By applying a 
positive or negative bias to another zone gives different response of the ratios.  

A basic way to classify these responds is by binary evaluation of every airflow ratio 
against the thresholds. This structure gives an observed fault signature , . 
Applications of the observed fault signature can be found in Fagarasan and Iliescu 
(2008), which is used as a tool for isolating the fault source. Making use of this 
structure we get: 

,
1
0
		
if		 , ,

otherwise
 ; for a negative bias in the sensor of zone i. 

 

,
1
0
		
if		 , ,

otherwise
 ; for a positive bias in the sensor of zone i. 

These observed fault signatures allows isolation of the faulty DO sensor. The 
observed fault signature for every scenario can be ordered in an incidence matrix. 
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Application of incidence matrix in biological processes has been used for isolation of 
multiple actuator and sensor faults in a waste water treatment process (Fragkoulis et 
al., 2011). Table 1 shows the incidence matrix for the case of N=3 zones in series. 
 

Table 1. Incidence matrix for 3 zones in series 
 ,  ,  ,  ,  ,  ,  

negative bias in DO1 1 1 0 0 0 0 
negative bias in DO2 0 0 1 1 0 0 
negative bias in DO3 0 0 0 0 1 1 
positive bias in DO1 0 0 1 0 1 0 
positive bias in DO2 1 0 0 0 0 1 
positive bias in DO3 0 1 0 1 0 0 

 
Evaluation of the fault detection methods 
In order to evaluate the performance of the algorithms in terms of the percentage of 
fault detections, fault isolations, and false alarms, the following indexes are used: 
  

∑ ∙ 100;     where    1
0
if

otherwise
 (4)

  

∑ ∙ 100;     where    
1
0

if
otherwise

 (5)

  

∑ ∙ 100;     where    
1
0

if
otherwise

 (6)

where t , t , t , and t  are the time of the true fault occurrence, the time of the 
fault detection, the time of the fault isolation, and the total evaluation time, 
respectively. FD is the percentage of fault detections; FI is the percentage of fault 
isolations and FA is the percentage of false alarms. M refers to the total number of 
simulation runs, and k refers to the kth simulation. 

The delay involved in the fault detection and isolation is taken into account. For 
AM the time of the fault detection and the time of the fault isolation are the same 

. When ARM is used, the decision of fault detection and fault isolation are 
made separately. Therefore, fault detection index (IFD) and fault isolation index (IFI) 
have been defined as follows: 

1 ∑ ∙ 100;    where 
Δ for correct	FD

otherwise
 (7) 

  

1 ∑ ∙ 100;  where 
Δ for	correct	FI

otherwise
 (8)

 
where Δ  is the fault detection delay, and Δ  is the fault 
isolation delay. 

 
Case study 1: Synthetic data from BSM1 
The BSM1 (Copp, 2002) was selected as the simulation platform. The BSM1 includes 
model, plant layout (pre-denitrification plant with five activated sludge zones in 
series, two anoxic and three aerobic), control systems and a benchmark procedure. 
The system was simulated using the MATLAB/Simulink® platform. Three different 
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dynamic influent events were considered: dry, rain and storm. The simulation time 
was extended from 14 to 21 days in order have some more days for the FD 
evaluations. The DO feedback PI-control in zone 5 was also applied to zone 3 and 4. 
Every control loop has a set-point of 2 mgO2/l. The nitrate feedback PI-controller in 
the second anoxic compartment is kept as by default. We use the notation DOj for the 
DO sensor in zone j. 

The implementation of the faults was assessed based on the approach developed by 
Corominas et al. (2011) and previous work given by Rosen et al. (2008). The DO 
sensors belong to class A, with a response time of 1 min in non-faulty conditions, a 
measurement range of 0–10 mgO2/l and a noise standard deviation of 0.25 mgO2/l. 
Currently, no air flow model is defined in BSM1. For simplicity, KLa was selected as 
the monitored variable for the FD methods. 

This case study was evaluated via MonteCarlo simulations, which includes the 
following steps: 

Step 1:  A set of dynamic simulations are executed for the three different influent 
events in non-faulty conditions. In this step, the thresholds are calculated. 

Step 2:  An influent event and a faulty DO sensor are selected. 

Step 3:  BSM1 is simulated for 150 days in order to reach steady state conditions.  

Step 4:  A dynamic simulation is performed during 21 days. The time of the fault 
event is generated via MonteCarlo method, in which the domain of the 
possible fault time is defined (in this case, the fault may occur between day 7 
and 14). The fault time is generated randomly from a probability distribution 
over the domain.  

Step 5:  If the kth run is lower than M (total number of simulations), go to Step 3. 
Otherwise, go to Step 2. 

 
Case study 2: Real data from a WWTP 
The FD methods were tested in a full-scale WWTP located in Stockholm, Sweden. In 
this case, the setup consisted on three aerated zones of one treatment line. The DO in 
each aerated zone was automatically controlled. The valve position was used as the 
monitored variable for the FD methods. The data was collected using a sampling time 
of 6 minutes. The experiment included the detection of bias and noise type faults. For 
bias fault, a value of -0.5mgO2/l was added to the DO sensor value. Regarding the 
noise fault, it was generated by stopping the periodical cleaning of the sensor. 

By default, the threshold values for AR ( 	; 	 ) and for ARM ( , ) were calculated 
with 1.1 (10% over the maximum values given in normal conditions). M = 20 
total of simulation runs were executed for every influent event and faulty zone. 

Results and discussions   

Case study 1: BSM1 
As an example, a positive bias of 1mgO2/l was applied to the DO sensor in zone 5 
(DO5). Figure 1 shows the airflow ratio profiles in non-faulty and faulty conditions. 
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Figure 1. Airflow ratio profiles in normal conditions (fi,j in black), and when a bias of 1mgO2/l is 
applied in DO5 (fi,j(*), in gray). Thresholds (dashed gray) and fault occurrence (dashed black). 
 

Using the incidence matrix given in Table 1, the observed fault signature for this 
example is showed in Table 2. 

Table 2. Observed fault signature for a positive bias in DO5  
 ,  ,  ,  ,  ,  ,  

positive bias in DO5 0 1 0 1 0 0 
 

Note that f4,5 is the first ratio above the threshold (giving , 1), therefore a 
sensor fault is decided. The second ratio above the threshold is f3,5 (giving , 1). 
Hence, a fault in DO5 is decided. Furthermore, note the delay in the FD (Δtd) and the 
delay in the fault isolation (Δti).  

The same faulty condition was evaluated by MonteCarlo simulations, considering 
different locations of the faulty sensor (zone 3, 4 and 5), different influents (dry, rain 
and storm) and a fault occurrence generated randomly between day 7 and 14. Results 
are shown in Table 3. Note that AM and ARM give similar results in terms of the 
amount of fault detection, isolations and false alarms. However, taking into account 
the time needed for isolation, ARM shows better results. From this simulation study, 
ARM presents promising results for a correct and early fault detection and isolation. 

 
Table 3. Summary of results of case study 1 for bias-type fault. 

Influent Zone Method 
Δtd  

[d] 
Δti  

[d] 
FD  
[%] 

FI  
[%] 

FA  
[%] 

IFD 
[%]  

IFI  
[%] 

Dry 

3 
AM 1.75 +/- 1.67  100 100 0 91.7 83.4 

ARM 0.03 +/- 0.03 0.18 +/- 0.17 100 100 0 99.9 98.3 

4 
AM 0.54 +/- 0.52  100 100 0 97.5 96.9 

ARM 0.07 +/- 0.09 0.46 +/- 0.24 100 100 0 99.7 95.6 

5 
AM 0.61 +/- 0.81  100 100 0 97.1 94.2 

ARM 0.21 +/- 0.21 0.32 +/- 0.27 100 100 0 99.0 97.0 

Rain 

3 
AM 0.59 +/- 0.45  100 100 0 97.2 94.3 

ARM 0.03 +/- 0.05 0.07 +/- 0.1 100 100 0 99.9 99.3 

4 
AM 0.82 +/- 0.81  90 100 10 93.3 85.4 

ARM 0.03 +/- 0.02 1.93 +/- 1.62 95 100 5 97.5 78.3 

5 
AM 1.56 +/- 1.45  100 100 0 92.6 85.2 

ARM 0.62 /- 0.77 1.55 +/- 1.45 100 100 0 97.1 85.2 

Storm 

3 
AM 0.58 +/- 0.58  100 75 0 97.3 64.3 

ARM 0.05 +/- 0.06 0.11 +/- 0.1 100 100 0 99.8 99.0 

4 
AM 0.69 +/- 0.63  100 75 0 96.7 63.4 

ARM 0.07 +/- 0.09 0.78 +/- 0.60 100 90 0 99.7 93.4 

5 
AM 1.47 +/- 1.44  100 100 0 93.0 86.0 

ARM 0.45 +/- 0.43 1.01 +/- 0.98 100 100 0 97.9 90.4 
 

Note that for the case of 1 mgO2/l of bias, similar results for AM and ARM in terms 
of the amount of fault detection FD and isolation FI are obtained. However, taking 
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into account the instant of isolation, the index IFI shows better results for ARM 
algorithm. This reflects that, in general, the time needed for fault isolation is lower in 
ARM than in the AM algorithm. 

The effect of different levels of bias was also studied. For that, a range of bias from 
+/-0.25 to +/- 1 mgO2/l was considered. The non-faulty condition (0 mgO2/l) was 
included in the evaluation. Figure 2 shows the percentage of fault detections (FD) and 
false alarms (FA) for this evaluation. 

 
 Zone 3     Zone 4 Zone 5 

Dry 

 

Rain 

 

Storm 

 
Figure 2. Percentage of fault detections (FD) and false alarms (FA) for AM and ARM methods for 
different bias faults. 

 

The sensitivity analysis for the bias given in Figure 2 shows that the ARM has a 
higher rate of fault detections compared to the AM algorithm. As expected, both 
methods show similar performance for high level of bias (+/- 1). However, this 
performance decreases when the bias is in the range of - 0.25 to + 0.25, which is the 
range of the noise standard deviation defined for the sensor modeling in non-faulty 
conditions. 

Case study 2: Full-scale WWTP 
Figure 3 shows an example of the results obtained in the WWTP. In this case, a 
negative bias of 0.5mgO2/l was applied to the DO sensor in the second zone at 
t =44.43d, and the valve position is monitored before and after the fault 
occurrence. In the plots, the thresholds are shown with grey dashed lines, and the fault 
occurrence and fault detection are shown with blue and red dashed lines, respectively. 
Vi refers to the valve position in zone i. 
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AM response 

 

ARM response 

Figure 3. FD responses. (a), (b) and (c): AM response. (d) to (i): ARM response. Thresholds (dashed 
grey), true fault occurrence (dashed blue), fault detection (dashed red). Vi is valve position in zone i. 
 

Observe that for AM, it is the valve position in the second aerated zone (V2) who 
crosses the threshold (giving t =44.94d). For ARM, it is first the ratio V2/V1 (giving 
t =44.52d) and then V2/V3 (giving t =44.56d) and who cross the thresholds. Hence, as 
indicated in Table 1, by using these two ratios fault isolation in the second zone can 
be decided. Note that ARM gives fault isolation earlier than AM. 

Since AM and ARM are FD methods based on the monitoring of the manipulated 
variable, this indirect way of monitoring makes the delay in the fault detection depend 
on the moment at which the fault signal occurs. For example, in the case of ARM, if 
there is a fault in DOi sensor, the delay in the fault detection will be shorter if the 
correspondent fi,j ratio is close to its maximum values. Similarly, the delay will be 
longer if the correspondent fi,j ratio is close to its minimum values in the fault 
moment. The same analysis applies for the airflow monitoring in the AM algorithm. 

Conclusions 

This study shows the performance of a simple fault detection algorithm, ARM, 
developed in order to detect and isolate faults in the dissolved oxygen sensor during 
closed loop control. The new approach is compared with AM, which monitor the 
aeration in every zone.  

The method assumes that the DO sensors are in closed loop control. The method 
can be used for an arbitrary number of zones in series. Three aerated zones are used as 
case study, applying the method to the BSM1. Naturally, AM and ARM can be used 
for fault detection and isolation, although simulation and experiments showed that 
ARM gives better performance. In this respect, the definition of indexes for fault 
detection and fault isolation allowed quantifying and comparing the methods, taking 
into account not only the number of detection but also the time delay involved.  

The method can be extended in several ways including: 

 In many plants there are a number of parallel lines, each with a number of aerated 
zones. A natural extension of ARM for this case is to also compute the ratios 
between zones in different lines.  

 If there is a significant time delay in the air flows into different zones, this delay 
may be adjusted by calculating the ratio in Equation (3) as: 
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, (9)

where τ is an estimate of the time delay between zone i and j. This may improve 
the performance of the detection. Note, however, that in order to calculate 
Equation (9) a time delay is unavoidable. An interesting topic for further research 
is to compare Equation (3) with (9) for systems with significant hydraulic delays. 
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