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Abstract 

Based on on/off aeration strategies, this paper describes all the steps involved in the development 

and implementation of three identification algorithms aimed at monitoring the oxygen uptake rate 

(OUR), the oxygen mass-transfer coefficient (KLa), and oxygen transfer efficiency (OTE) in 

aerated biological reactors. Firstly, a detailed explanation of the theoretical background behind 

every algorithm is given. In addition, practical issues have also been taken into account in order to 

guarantee the quality of estimations. Finally, the three algorithms have been implemented and 

validated in a full-scale industrial wastewater treatment plant with satisfactory results. Although 

short-term noise has been observed in the estimated data (especially at high OURs), the medium 

and long-term data trajectories have been correctly reproduced. 
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INTRODUCTION 

Unlike large wastewater treatment plants (WWTP), small systems (covering both urban and 

industrial WWTPs) are designed using criteria wherein autonomy and minimum maintenance 

prevail over issues such as advanced monitoring and control. As a consequence, in general: (1) only 

low-cost instrumentation (e.g., online measurements of dissolved oxygen, redox potential, pH, 

temperature, flow-rate, water level …) is available in these plants; and, (2) coarse regulation 

capabilities are preferred (on/off valves, fixed-speed pumps, etc.). Obviously, the above 

considerations limit the implementation of sophisticated monitoring and control solutions; however, 

there is no reason why, nowadays, available measurements are being under-exploited in most of 

these systems, particularly when there are full-scale examples that prove how valuable information 

for diagnosis can be obtained by processing online data (Lee et al., 2008). 

 

Concerning the industrial sector, although anaerobic digestion has arisen recently as a cost-effective 

technology for biological carbon removal, aerobic treatments still predominate, particularly when 

stringent limits on the effluent discharges are imposed. It is widely known that external aeration is 

an important factor within the total operating costs associated with aerobic treatments. Moreover, 

the activity of micro-organisms and, therefore, process performance depend strongly on how the 

external aeration is operated. Thus, the incorporation of aeration control strategies appears essential 

for two reasons: (1) to save energy costs; and, (2) to guarantee effluent quality.  

 

As mentioned above, in general, industrial WWTPs are built with low-cost basic equipment. For 

aeration control, a common practice within industrial facilities is the utilisation of on/off systems. 

Clearly, this kind of actuation is not the best means of achieving a fine regulation of the dissolved 

oxygen (DO). Nevertheless, on/off aeration systems can be used beneficially to implement simple 

software sensors for the online monitoring of process indicators such as: (1) the Oxygen Uptake 

Rate (OUR); (2) the oxygen mass-transfer coefficient (KLa); and (3) the Oxygen Transfer Efficiency 

(OTE). Thus, the online estimation of these three parameters gives small plants low-cost solutions 

for the implementation of advanced monitoring and control tools. At present, however, there is no 
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clear confirmation that these indicators are being monitored in full-scale installations. Just a few 

examples applied to lab/pilot-scale plants can be found in the literature (Puig et al., 2005). This 

paper describes all the steps involved in the development and implementation of three identification 

algorithms for online monitoring of the OUR, KLa and OTE parameters. These algorithms are 

intended for plants controlled by on/off aeration systems. They have been integrated and validated 

within AqquaScan (Castro et al., 2007), an Internet-based service for the remote monitoring of 

decentralised WWTPs, aimed at providing plant operators with remote access to these parameters.  

 

 

DESCRIPTION OF THE IDENTIFICATION ALGORITHMS: THEORETICAL BASIS  

OUR and KLa identification algorithms 

Figure 1 shows a theoretical profile of the DO trajectories that result from applying on/off 

strategies for aeration control in a biological tank. For the more general case, the DO dynamics in a 

variable-volume completely-stirred aerated reactor is modelled by equations [1]. It can be seen that, 

four terms have effect on the dynamics of the DO: (1) the oxygen transfer rate from external 

aeration; (2) the oxygen transfer rate across the free surface of the mixed liquor; (3) the oxygen 

consumption rate by micro-organisms; and (4) the mass transport term.  

 














outin

in
in

2sat2LsatL

QQ
dt

dV

)DODO(
V

Q
OUR)DODO(aK)DODO(aK

dt

dDO

 [1] 

 

Two coefficients for DO saturation have been included (DOsat and DOsat2) in order to take into 

consideration that the composition of the gas used for external aeration (air, pure oxygen …) can 

differ from that of the gas in contact with the liquid across the free surface (normally, air). In most 

cases, the second and forth terms in [1] are small in comparison to the other two and, therefore, can 

be neglected. This leads to a simpler formulation as shown by equation [2], where the oxygen mass-

transfer coefficient KLa depends, among other factors, on the inlet gas flow-rate (KLa = f(Qgas)).  
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For the particular case of on/off DO control strategies (see Figure 1), it can be easily deduced that, 

when aeration is switched off (Qgas = 0  KLa = 0), the slope of the DO falling trajectory is due to 

the activity of micro-organisms (i.e., the OUR parameter). Therefore, at least theoretically, an online 

estimation of the OUR can be performed by processing the DO measurements collected during 

every sub-interval in which external aeration is off (from now on, OFF intervals). Simple linear 

regression algorithms are particularly appropriate for this purpose because their implementation is 

straightforward and reliable results are obtained.  

 

By solving [2] for those sub-intervals in which aeration is switched on (from now on, ON intervals) 

and on the assumption that Qgas and OUR, are both constant during the interval, an exponential 

trajectory for DO, as expressed by equation [3], is obtained. In this expression, OUR can be 

assumed to be known since a new value is available at the end of each OFF interval. Thus, the only 

unknown parameter in [3] is KLa, which can be calculated by fitting [3] to the DO rising trajectory 

that takes place in every ON interval. KLa identification algorithms have been thoroughly described 

in previous works. As in the OUR estimation, linear regression methods are also valid to estimate 

KLa; however in this case they must be combined with iterative procedures (Suescun et al., 1999). 
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Figure 1. On/off aeration control: theoretical 

DO response 

Figure 2. On/off aeration control: comparison 

of sensor and real DO trajectories 

 

OTE identification algorithm 

In aerated basins, the Oxygen Transfer Efficiency (OTE) parameter quantifies the fraction of 

oxygen from the inlet gas stream that dissolves into the mixed liquor under given process 

conditions. Off-gas analysis is the most common technique applied in full-scale WWTPs to 

determine OTE in-situ (Leu et al., 2008). However, off-gas methods require specialized equipment 

and are only applicable to diffused air systems. Moreover, despite the development of cost-effective 

prototypes in the last few years, this technique remains mostly targeted at medium/large systems. 

On/off aeration strategies are also of great interest in this case since OTE values can be easily 

calculated using the estimations of DOr and OUR. For a period T = t1 - to (days) such that OUR 

and V are constant and DO(to) = DO(t1), it can be stated that the oxygen transferred to the liquid 

phase (OT - g O2) equals the oxygen consumption by micro-organisms (see equation [4]).  
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Furthermore, if Ton  T is the sub-interval where aeration is ON and Qgas (assumed constant in 

Ton) is the gas flow-rate (Nm
3
/h) in this sub-interval, then the mass of oxygen supplied (OS – g O2) 

in T is obtained by equation [5] (FrO2 is the mole fraction of oxygen in the inlet gas): 
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Finally, OTE (%) can be calculated as the quotient of [4] and [5]; i.e., the quotient between the 

oxygen transferred OT and the oxygen supplied OS, both corresponding to the same period T 

(equation [6]). The OTE identification implements a real-time search algorithm that, in every 

aeration cycle (i.e., OFF interval + ON interval), processes the collected DO measurements to 

automatically find values for T, and within it, for Ton. Then these values together with the most 

recent OUR value are substituted into [6] to determine OTE. It can be seen that this algorithm 

affords small plants a simple and low-cost solution for the online monitoring of OTE values. 
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Remarks on practical implementation: industrial DO sensors 

The implementation of the OUR and KLa algorithms shown in the previous section would not be so 

complicated if commercial DO probes had a nearly instantaneous dynamic response. Unfortunately, 

currently only DO instruments for laboratory use seem to present such dynamic properties. In 

contrast, manufacturers of industrial DO sensors prioritise robustness to the detriment of fast time-

response. Industrial sensors are not able to follow the real DO trajectories that result from the 

application of on/off strategies for aeration (see Figure 2) and, consequently, an estimation of OUR 

and KLa directly based on the DO measurements (DOm) leads to erroneous values. This explains in 

part why the application of these algorithms has been limited to lab-scale studies. A full-scale 

implementation requires the real DO (DOr) to be estimated beforehand. This can be carried out by 

modelling the dynamic response of DO probes. First-order models with dead time, as shown by 

equation [7], have proved to give satisfactory predictions (Spanjers and Olsson, 1992). In order for 

the values of Tc (time constant) and Tm (dead time) to be obtained, simple step-response 

experiments are usually conducted. From the processing of the DOm signal, its first derivative 

(dDOm/dt) can be calculated online; then, the values of DOm and dDOm/dt can be substituted into [7] 

to predict DOr. Finally, once online DOr measurements are available, they can be used to estimate 

OUR and KLa as described in the previous section. 
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Figure 3. DO step-response: comparison of 

real measurements and model predictions 

after calibration (Hach-Lange LDO sensor) 

Figure 4. Estimation of DOr: comparison of 

online trajectories for DOm (sensor) and DOr 

(estimation) 

 

 

SOFTWARE IMPLEMENTATION 

DOr estimation 

In order for the online estimation of DOr to give satisfactory results, the following adaptations have 

been required. Since DOr estimations involve calculating the first derivative of DOm, it has been 

necessary to implement a low-pass filter for the DOm sensor signal. Accordingly, a second-order 

Butterworth digital filter has been designed to ensure full attenuation of high-frequency noise. A 

natural consequence of filtering is that the dynamic model for the DO sensor ([7]) has to be 

reformulated in terms of the filtered signal DOmf, which leads to equation [8]. Moreover, for every 

DO probe, a step-response experiment has to be conducted. Then, an optimisation algorithm is 

applied to find the values of Tcf and Tmf that best fit the model predictions to the experimental 

results. As an example, Figure 3 compares, the real and simulated values obtained using a 

particular Hach-Lange LDO probe, once the model has been calibrated. In addition, Figure 4 shows 

the online estimations of DOr obtained with the calibrated model, using a data set of DO 

measurements collected from the Hach-Lange LDO probe. 
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OUR and KLa estimation 

To improve the robustness of the OUR and KLa algorithms, several pre- and post-processing tasks 

have been introduced. First, a real-time search algorithm to find maximum and minimum values in 

the DOr trajectory has been implemented. It guarantees that OUR and KLa calculations are 

performed only with data from the respective DOr falling and DOr rising sub-trajectories. 

Moreover, it has been necessary to set limits for the number of DOr points required to perform 

estimations. A minimum limit has been set to ensure that the DOr trajectory is representative; a 

maximum limit minimises the effect of changes of either OUR or KLa in the interval.  

 

As regards the OUR algorithm, a limit value DOmin has been set to prevent estimations using low 

values of DOr. Thus, DOr values less than DOmin are automatically rejected for OUR calculations. 

Considering that OUR estimations are calculated on the basis of linear regression methods, the 

square of the correlation coefficient (R
2
) has been used as an indicator to quantify the Reliability of 

Estimations (RoE parameter). A limit value RoEmin has been set to prevent the storage of erroneous 

estimations. Thus, only OUR estimations whose RoE values are greater than RoEmin are accepted 

and, therefore, stored. Finally, the OUR algorithm implements an iterative procedure that, for every 

OFF interval, automatically finds those points of the DOr falling trajectory that give a RoE 

maximum and, in addition, satisfy all the above constraints. 

 

After analysing the shape of multiple DOr rising trajectories in three different full-scale plants, it 

was observed that these curves had, in many cases, short and sudden fluctuations. Since the quality 

of KLa estimations is very sensitive to the presence of these fluctuations, it was decided to modify 

the algorithm in order to estimate KLa using DOmf trajectories, instead of DOr trajectories. This 

meant that [3] had to be replaced by a new equation, [9], which expresses the theoretical response 

of DOmf as a function of KLa. Moreover, the Levenberg-Marquardt algorithm (LMA; Marquardt, 

1963) was implemented to find the KLa values that best fit [9] to the DOmf rising trajectories.  

 

Finally, in every ON interval, the calculation of KLa is conditional on the availability of a reliable 

OUR value; otherwise, the KLa algorithm is skipped. A more stringent condition is to limit KLa 

calculations to only those DOmf rising trajectories that fulfil the two following criteria: (1) OUR 

estimations in the preceding and subsequent DOr falling trajectories are reliable; and (2) both OUR 

values are similar. Such a condition reduces the frequency of KLa estimations but increases the 

confidence in calculated values (OUR can be assumed constant in these cases only). This 

functionality has not been implemented, however, in the current software release; at present it is 

under consideration for future versions.  
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OTE estimation 

As in the KLa estimation algorithm, OTE calculations are determined by the availability of reliable 

OUR values; otherwise the OTE algorithm is skipped. Moreover, since sudden changes of OUR 

negatively affect the quality of OTE data, the OUR constant condition proposed in the previous 

section for the KLa algorithm can also be included in this case. Again, this condition will be 

considered for future implementations. OTE estimations are also sensitive to small values of Ton; 



hence, a minimum limit Ton,min (in units of %T) has been set to prevent the storage of erroneous 

OTE values. 

 

 

RESULTS AND DISCUSSION 

The three identification algorithms have been implemented and validated in a full-scale Membrane 

Bioreactor system (MBR) treating pharmaceutical wastewater. The MBR configuration is made up 

of two biological tanks with an effective volume of 405 m
3
 each and working in parallel. For 

external aeration, both tanks are equipped with a PRAXAIR I-SO system (an aeration system 

based on high-purity oxygen). Two Hach-Lange LDO sensors, one per basin, have been installed to 

control the DO according to an on/off aeration strategy. Other monitored variables are: the reactor 

temperature, the influent and permeate flow-rates, and the water level. All these measurements can 

be accessed remotely via the Internet using AqquaScan software. 

 

Online monitoring of DOr 

Figure 5 shows the performance of the on/off DO controller as well as the estimation results for the 

real DO (DOr). It should be observed that on/off actions are based on DO sensor measurements 

(DOm), 1 and 2 mg/L, being the lower and upper set-points of the DOm control band, respectively. 

The DOm profile seems to confirm a good regulation of the DO level in the reactor, with DOm 

values within the aerobic range most of the time, as required for carbon removal. In contrast, DOr 

estimations exhibit very low values at the end of the OFF intervals (dashed-line circle in Figure 5), 

which evidence that actually the reactor does not work permanently under aerobic conditions and 

therefore that the process is not being operated efficiently. The large discrepancies between DOm 

and DOr measurements are attributed to two factors: (1) the high organic loading rates applied to 

the process (≈ 4 kg COD/m
3
d); and (2) the slow dynamic response of the DO sensor.  
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Figure 5. Online monitoring of DOm 

(sensor) and DOr (estimation) 

Figure 6. Online estimations of OUR 

 

In conclusion, the DOm trajectories that result from on/off aeration strategies do not always reflect 

the real aerobic conditions present in the process. Thus, the online estimation of DOr appears crucial 

in order for plant operators to diagnose and correct abnormal situations which would otherwise 

remain unobserved. The following two solutions can help to prevent the situation shown in Figure 

5: (1) narrowing the DOm control band by increasing the value of the lower DO set-point; and (2) 

implementing the on/off DO control strategy using DOr estimations instead of DOr measurements. 

 

Online monitoring of OUR 

Figure 6 shows some results on the performance of OUR estimations. The larger deviations in OUR 

values take place during the daytime, under normal operation. The cause of these variations can be 

attributed to two major reasons: (1) short-term fluctuations in the organic load; (2) the greater 

sensitivity of the identification algorithm to high values of OUR. At high OURs, the slope of the 



DO falling trajectories increases and less DOmf data are available during the OFF intervals to 

estimate OUR. In this respect, an automatic cycle-to-cycle regulation of the DO control band as a 

function of the OUR would help to improve the quality of estimations. In contrast, when influent is 

interrupted at night, the OUR trajectory describes a gradual decrease with practically no oscillations 

(dashed-line circle in Figure 6). In this period, OUR values correspond to the endogeneous 

respiration rate and, therefore, they give an estimation of the active biomass present in the mixed 

liquor. 

 

Additionally, in cases where model-based tools, such as dynamic simulators, assist plant operation  

endogenous OUR is an important parameter for model calibration. Moreover, the gradual decrease 

of the OUR at night periods is linked with reactor temperature and, therefore, allows the 

dependence of temperature on the endogenous respiration rate to be measured. Due to both the 

exothermic nature of bio-chemical aerobic transformations and the high organic loads, the reactor 

temperature increases under normal operation. At night, however, with the feeding pump switched 

off, the biological heat flux falls sharply and, as a result, the temperature in the tank undergoes a 

smooth decrease which, obviously, affects OUR.  

 

Online monitoring of KLa and OTE 

KLa online estimations (Figure 7) in general show fluctuations from cycle to cycle that contrast 

with the application of a constant oxygen gas flow-rate (QO2 ≈ 60 Nm
3
/h) during the ON intervals. 

Nevertheless, more than 80% of the estimated values are within the range 100-150 d
-1

. As 

mentioned above, in every ON interval the KLa algorithm uses the values of OUR. The current 

implementation of the KLa algorithm takes this OUR value from the preceding OFF interval. In this 

respect, variations in OUR from cycle to cycle reduce the quality of KLa measurements. In fact, 

under normal operation (during the day), deviations in KLa values probably stem from the variations 

in the OUR data. Additionally, the OUR algorithm, itself, introduces errors into OUR estimations 

and, hence, into KLa estimations also.  
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Figure 7. Online monitoring of KLa Figure 8. Online monitoring of OTE 

 

It is worthwhile remarking that, at night, although the variations in OUR from cycle to cycle 

decrease significantly (see Figure 6), KLa fluctuations remain. Again, it is not easy to determine 

with precision the causes of this observation. One of them might be the greater sensitivity of the 

KLa algorithm to low OUR values. At low OURs, the slope of the DO rising trajectories increases, 

and less DOmf data are available to estimate KLa. As a solution, an automatic cycle-to-cycle 

regulation of the inlet gas flow-rate (in this case, QO2) as a function of both the OUR and the DO 

control band would help to equalise the DO rising trajectories. 

 

The OTE algorithm is also sensitive to errors in OUR measurements (see Eq. [6]). This is the reason 

for the large variations in the OTE estimations under normal operation (high OURs). In fact, it can 

be seen that in this period the current implementation of the OTE algorithm sometimes produces 



erroneous measurements greater than 100% (Figure 8). In contrast, during non-feeding periods, the 

variability of the OTE estimations decreases significantly. The comparison of the OTE results under 

normal operation and at night clearly reveals greater efficiencies in the first case. Surprisingly, OTE 

seems to exhibit a certain correlation with the OUR. In this respect, further research should be 

carried out to confirm the above conclusion: firstly, it needs to be proved that the OTE identification 

algorithm, itself, is not connected with such behaviour. Nonetheless, assuming that the OTE results 

are valid, automatic regulation of both the DO set-point and QO2 based on the OUR can contribute 

to an improvement in the performance of the plant and to a saving in aeration costs. Under normal 

operating conditions (high OURs), the DO set-point and QO2 should be increased; conversely, at 

night, during non-feeding periods, the DO set-point and QO2 should be decreased. 

 

 

CONCLUSIONS 

In spite of the fact that small treatment facilities generally employ only low-cost sensors and 

actuators, the operation of these plants introduces particular functionality such as on/off aeration or 

non-continuous feeding which, if appropriately exploited, allow enhanced information for plant 

diagnosis to be collected with no need for extra instrumentation. On/off aeration strategies provide 

low-cost alternatives for monitoring online the oxygen uptake rate (OUR), the oxygen mass transfer 

coefficient (KLa) and the oxygen transfer efficiency (OTE). The online monitoring of these three 

indicators has been carried out in a full-scale industrial WWTP with the following conclusions: (1) 

the actual aerobic conditions in the process can be monitored from the online estimation of the real 

DO; (2) non-continuous feeding periods are suitable for measuring the endogenous respiration rate 

of micro-organisms; (3) the observed correlation between OTE and OUR measurements should be 

investigated in the future. Finally, experimental results have shown that the current implementation 

of the identification algorithms is especially sensitive to high OUR values. It is anticipated that this 

problem will be overcome in future software releases by incorporating additional signal processing 

mechanisms that improve the reliability of estimations; 
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